1---
2geometry: margin=2cm
3<!-- columns: 2 -->
4graphics: yes
5tables: yes
6author: Andrew Lorimer
7---
8
9
10\pagenumbering{gobble}
11
12
13# Methods - Calculus
14
15## Average rate of change
16
17$$m \operatorname{of} x \in [a,b] = {{f(b)-f(a)}\over {b - a}} = {dy \over dx}$$
18
19Average rate of change between $x=[a,b]$ given two points $P(a, f(a))$ and $Q(b, f(b))$ is the gradient $m$ of line $\overleftrightarrow{PQ}$
20
21On CAS: (Action|Interactive) -> Calculation -> Diff -> $f(x)$ or $y=\dots$
22
23## Instantaneous rate of change
24
25Secant - line passing through two points on a curve
26Chord - line segment joining two points on a curve
27
28Estimated by using two given points on each side of the concerned point. Evaluate as in average rate of change.
29
30## Limits & continuity
31
32### Limit theorems
33
341. For constant function $f(x)=k$, $\lim_{x \rightarrow a} f(x) = k$
352. $\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G$
363. $\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G$
374. ${\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0$
38
39A function is continuous if $L^-=L^+=f(x)$ for all values of $x$.
40
41## First principles derivative
42
43$$f^\prime(x)=\lim_{h \rightarrow 0}{{f(x+h)-f(x)} \over h}$$
44
45## Tangents & gradients
46
47**Tangent line** - defined by $y=mx+c$ where $m={dy \over dx}$
48**Normal line** - $\perp$ tangent ($m_{\operatorname{tan}} \cdot m_{\operatorname{norm}} = -1$)
49**Secant** $={{f(x+h)-f(x)} \over h}$
50
51### Solving on CAS
52
53**In main**: type function. Interactive -> Calculation -> Line -> (Normal | Tan line)
54**In graph**: define function. Analysis -> Sketch -> (Normal | Tan line). Type $x$ value to solve for a point. Return to show equation for line.
55
56## Stationary points
57
58Stationary where $m=0$.
59Find derivative, solve for ${dy \over dx} = 0$
60
61![](https://cdn.edjin.com/upload/RESOURCE/IMAGE/78444.png){#id .class width=20%}
62
63**Local maximum at point $A$**
64- $f^\prime (x) > 0$ left of $A$
65- $f^\prime (x) < 0$ right of $A$
66
67**Local minimum at point $B$**
68- $f^\prime (x) < 0$ left of $B$
69- $f^\prime (x) > 0$ right of $B$
70
71**Stationary** point of inflection at $C$
72
73## Function derivatives
74
75
76| $f(x)$ | $f^\prime(x)$ |
77| ------ | ------------- |
78| $x^n$ | $nx^{n-1}$ |
79| $kx^n$ | $knx^{n-1}$ |
80| $g(x) + h(x)$ | $g^\prime (x) + h^\prime (x)$ |
81| $c$ | $0$ |
82| ${u \over v}$ | ${{v{du \over dx} - u{dv \over dx}} \over v^2}$ |
83| $uv$ | $u{dv \over dx} + v{du \over dx}$ |
84| $f \circ g$ | ${dy \over du} \cdot {du \over dx}$ |
85