1---
2geometry: margin=2cm
3columns: 2
4graphics: yes
5tables: yes
6author: Andrew Lorimer
7classoption: twocolumn
8---
9
10# Differential calculus
11
12## Limits
13
14$$\lim_{x \rightarrow a}f(x)$$
15
16$L^-$ - limit from below
17
18$L^+$ - limit from above
19
20$\lim_{x \to a} f(x)$ - limit of a point
21
22- Limit exists if $L^-=L^+$
23- If limit exists, point does not.
24
25Limits can be solved using normal techniques (if div 0, factorise)
26
27## Limit theorems
28
291. For constant function $f(x)=k$, $\lim_{x \rightarrow a} f(x) = k$
302. $\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G$
313. $\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G$
324. ${\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0$
33
34Corollary: $\lim_{x \rightarrow a} c \times f(x)=cF$ where $c=$ constant
35
36## Solving limits for $x\rightarrow\infty$
37
38Factorise so that all values of $x$ are in denominators.
39
40e.g.
41
42$$\lim_{x \rightarrow \infty}{{2x+3} \over {x-2}}={{2+{3 \over x}} \over {1-{2 \over x}}}={2 \over 1} = 2$$
43
44
45## Continuous functions
46
47A function is continuous if $L^-=L^+=f(x)$ for all values of $x$.
48
49## Gradients of secants and tangents
50
51Secant (chord) - line joining two points on curve
52
53Tangent - line that intersects curve at one point
54
55given $P(x,y) \quad Q(x+\delta x, y + \delta y)$:
56gradient of chord joining $P$ and $Q$ is ${m_{PQ}}={\operatorname{rise} \over \operatorname{run}} = {\delta y \over \delta x}$
57
58As $Q \rightarrow P, \delta x \rightarrow 0$. Chord becomes tangent (two infinitesimal points are equal).
59
60Can also be used with functions, where $h=\delta x$.
61
62## First principles derivative
63
64$$f^\prime(x) = \lim_{\delta x \rightarrow 0}{\delta y \over \delta x}={dy \over dx}$$
65
66$$m_{\operatorname{tangent}}=\lim_{h \rightarrow 0}f^\prime(x)$$
67
68
69
70$$m_{\operatorname{chord PQ}}=f^\prime(x)$$
71
72first principles derivative:
73$${m_{\operatorname{tangent at P}} =\lim_{h \rightarrow 0}}{{f(x+h)-f(x)}\over h}$$
74
75## Gradient at a point
76
77Given point $P(a, b)$ and function $f(x)$, the gradient is $f^\prime(a)$
78
79
80## Derivatives of $x^n$
81
82$${d(ax^n) \over dx}=anx^{n-1}$$
83
84If $x=$ constant, derivative is $0$
85
86If $y=ax^n$, derivative is $a\times nx^{n-1}$
87
88If $f(x)={1 \over x}=x^{-1}, \quad f^\prime(x)=-1x^{-2}={-1 \over x^2}$
89
90If $f(x)=^5\sqrt{x}=x^{1 \over 5}, \quad f^\prime(x)={1 \over 5}x^{-4/5}={1 \over 5 \times ^5\sqrt{x^4}}$
91
92If $f(x)=(x-b)^2, \quad f^\prime(x)=2(x-b)$
93
94$$f^\prime(x)=\lim_{h \rightarrow 0}{{f(x+h)-f(x)} \over h}$$
95
96## Derivatives of $u \pm v$
97
98$${dy \over dx}={du \over dx} \pm {dv \over dx}$$
99where $u$ and $v$ are functions of $x$
100
101## Euler's number as a limit
102
103$$\lim_{h \rightarrow 0} {{e^h-1} \over h}=1$$
104
105## Chain rule for $(f\circ g)$
106
107If $f(x) = h(g(x)) = (h \circ g)(x)$:
108
109$$f^\prime(x) = h^\prime(g(x)) \cdot g^\prime(x)$$
110
111If $y=h(u)$ and $u=g(x)$:
112
113$${dy \over dx} = {dy \over du} \cdot {du \over dx}$$
114$${d((ax+b)^n) \over dx} = {d(ax+b) \over dx} \cdot n \cdot (ax+b)^{n-1}$$
115
116Used with only one expression.
117
118e.g. $y=(x^2+5)^7$ - Cannot reasonably expand
119Let $u-x^2+5$ (inner expression)
120${du \over dx} = 2x$
121$y=u^7$
122${dy \over du} = 7u^6$
123
124## Product rule for $y=uv$
125
126$${dy \over dx} = u{dv \over dx} + v{du \over dx}$$
127
128Surds can be left on denomintaors.
129
130## Quotient rule for $y={u \over v}$
131
132$${dy \over dx} = {{v{du \over dx} - u{dv \over dx}} \over v^2}$$
133
134If $f(x)={u(x) \over v(x)}$, then $f^\prime(x)={{v(x)u^\prime(x)-u(x)v^\prime(x)} \over [v(x)]^2}$
135
136If $y={u(x) \over v(x)}$, then derivative ${dy \over dx} = {{v{du \over dx} - u{dv \over dx}} \over v^2}$
137
138## Logarithms
139
140$$\log_b (x) = n \quad \operatorname{where} \hspace{0.5em} b^n=x$$
141
142Wikipedia:
143
144> the logarithm of a given number $x$ is the exponent to which another fixed number, the base $b$, must be raised, to produce that number $x$
145
146### Logarithmic identities
147
148$\log_b (xy)=\log_b x + \log_b y$
149$\log_b x^n = n \log_b x$
150$\log_b y^{x^n} = x^n \log_b y$
151
152### Index identities
153
154$b^{m+n}=b^m \cdot b^n$
155$(b^m)^n=b^{m \cdot n}$
156$(b \cdot c)^n = b^n \cdot c^n$
157${a^m \div a^n} = {a^{m-n}}$
158
159### $e$ as a logarithm
160
161$$\operatorname{if} y=e^x, \quad \operatorname{then} x=\log_e y$$
162$$\ln x = \log_e x$$
163
164### Differentiating logarithms
165$${d(\log_e x)\over dx} = x^{-1} = {1 \over x}$$
166
167## Derivative rules
168
169| $f(x)$ | $f^\prime(x)$ |xs
170| ------ | ------------- |
171| $\sin x$ | $\cos x$ |
172| $\sin ax$ | $a\cos ax$ |
173| $\cos x$ | $-\sin x$ |
174| $\cos ax$ | $-a \sin ax$ |
175| $\tan f(x)$ | $f^2(x) \sec^2f(x)$ |
176| $e^x$ | $e^x$ |
177| $e^{ax}$ | $ae^{ax}$ |
178| $ax^{nx}$ | $an \cdot e^{nx}$ |
179| $\log_e x$ | $1 \over x$ |
180| $\log_e {ax}$ | $1 \over x$ |
181| $\log_e f(x)$ | $f^\prime (x) \over f(x)$ |
182| $\sin(f(x))$ | $f^\prime(x) \cdot \cos(f(x))$ |
183| $\sin^{-1} x$ | $1 \over {\sqrt{1-x^2}}$ |
184| $\cos^{-1} x$ | $-1 \over {sqrt{1-x^2}}$ |
185| $\tan^{-1} x$ | $1 \over {1 + x^2}$ |
186
187<!-- $${d(ax^{nx}) \over dx} = an \cdot e^nx$$ -->
188
189Reciprocal derivatives:
190
191$${{dy \over dx} \over 1} = dx \over dy$$
192
193## Differentiating $x=f(y)$
194
195Find $dx \over dy$. Then $dx \over dy = {1 \over {dy \over dx}} \therefore {dy \over dx} = {1 \over {dx \over dy}}$.
196
197$${dy \over dx} = {1 \over {dx \over dy}}$$
198
199## Second derivative
200
201$$f(x) \implies f^\prime (x) \implies f^{\prime\prime}(x)$$
202
203$$\therefore y \implies {dy \over dx} \implies {d({dy \over dx}) \over dx} \implies {d^2 y \over dx^2}$$
204
205Order of polynomial $n$th derivative decrements each time the derivative is taken
206
207### Points of Inflection
208
209*Stationary point* - point of zero gradient (i.e. $f^\prime(x)=0$)
210*Point of inflection* - point of maximum $|$gradient$|$ (i.e. $f^{\prime\prime} = 0$)
211
212- if $f^\prime (a) = 0$ and $f^{\prime\prime}(a) > 0$, then point $(a, f(a))$ is a local min (curve is concave up)
213- if $f^\prime (a) = 0$ and $f^{\prime\prime} (a) < 0$, then point $(a, f(a))$ is local max (curve is concave down)
214- if $f^{\prime\prime}(a) = 0$, then point $(a, f(a))$ is a point of inflection
215- - if also $f^\prime(a)=0$, then it is a stationary point of inflection
216
217![](graphics/second-derivatives.png)
218
219## Antidifferentiation
220
221$$y={x^{n+1} \over n+1} + c$$
222
223## Integration
224
225$$\int f(x) dx = F(x) + c$$
226
227- area enclosed by curves
228- $+c$ should be shown on each step without $\int$
229
230$$\int x^n = {x^{n+1} \over n+1} + c$$
231
232### Integral laws
233
234$\int f(x) + g(x) dx = \int f(x) dx + \int g(x) dx$
235$\int k f(x) dx = k \int f(x) dx$
236
237| $f(x)$ | $\int f(x) \cdot dx$ |
238| ------------------------------- | ---------------------------- |
239| $k$ (constant) | $kx + c$ |
240| $x^n$ | ${x^{n+1} \over {n+1}} + c$ |
241| $a x^{-n}$ | $a \cdot \log_e x + c$ |
242| ${1 \over {ax+b}}$ | ${1 \over a} \log_e (ax+b) + c$ |
243| $(ax+b)^n$ | ${1 \over {a(n+1)}}(ax+b)^{n-1} + c$ |
244| $e^{kx}$ | ${1 \over k} e^{kx} + c$ |
245| $e^k$ | $e^kx + c$ |
246| $\sin kx$ | $-{1 \over k} \cos (kx) + c$ |
247| $\cos kx$ | ${1 \over k} \sin (kx) + c$ |
248| ${f^\prime (x)} \over {f(x)}$ | $\log_e f(x) + c$ |
249| $g^\prime(x)\cdot f^\prime(g(x)$ | $f(g(x))$ (chain rule)|
250| $f(x) \cdot g(x)$ | $\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx$ |
251
252## Applications of antidifferentiation
253
254- $x$-intercepts of $y=f(x)$ identify $x$-coordinates of stationary points on $y=F(x)$
255- the nature of any stationary point of $y=F(x)$ is determined by the way the sign of the graph of $y=f(x)$ changes about its $x$-intercepts
256- if $f(x)$ is a polynomial of degree $n$, then $F(x)$ has degree $n+1$
257
258To find stationary points of a function, substitute $x$ value of given point into derivative. Solve for ${dy \over dx}=0$. Integrate to find original function.
259
260## Rates
261
262### Related rates
263
264$${da \over db} \quad \text{change in } a \text{ with respect to } b$$
265
266#### Gradient at a point on parametric curve
267
268$${dy \over dx} = {{dy \over dt} \over {dx \over dt}} \> \vert \> {dx \over dt} \ne 0$$
269
270$${d^2 \over dx^2} = {d(y^\prime) \over dx} = {{dy^\prime \over dt} \over {dx \over dt}} \> \vert \> y^\prime = {dy \over dx}$$
271
272# Rational functions
273
274$$f(x) = {P(x) \over Q(x)} \quad \text{where } P, Q \text{ are polynomial functions}$$
275
276## Addition of ordinates
277
278- when two graphs have the same ordinate, $y$-coordinate is double the ordinate
279- when two graphs have opposite ordinates, $y$-coordinate is 0 i.e. ($x$-intercept)
280- when one of the ordinates is 0, the resulting ordinate is equal to the other ordinate
281