1\documentclass[a4paper, tikz, pstricks]{article}
2\usepackage[a4paper,margin=2cm]{geometry}
3\usepackage{array}
4\usepackage{amsmath}
5\usepackage{amssymb}
6\usepackage{tcolorbox}
7\usepackage{fancyhdr}
8\usepackage{pgfplots}
9\usepackage{tikz}
10\usetikzlibrary{arrows,
11 calc,
12 decorations,
13 scopes,
14 angles
15}
16\usetikzlibrary{calc}
17\usetikzlibrary{angles}
18\usetikzlibrary{datavisualization.formats.functions}
19\usetikzlibrary{decorations.markings}
20\usepgflibrary{arrows.meta}
21\usetikzlibrary{decorations.markings}
22\usepgflibrary{arrows.meta}
23\usepackage{pst-plot}
24\psset{dimen=monkey,fillstyle=solid,opacity=.5}
25\def\object{%
26 \psframe[linestyle=none,fillcolor=blue](-2,-1)(2,1)
27 \psaxes[linecolor=gray,labels=none,ticks=none]{->}(0,0)(-3,-3)(3,2)[$x$,0][$y$,90]
28 \rput{*0}{%
29 \psline{->}(0,-2)%
30 \uput[-90]{*0}(0,-2){$\vec{w}$}}
31}
32
33\usepackage{tabularx}
34\usetikzlibrary{angles}
35\usepackage{keystroke}
36\usepackage{listings}
37\usepackage{xcolor} % used only to show the phantomed stuff
38\definecolor{cas}{HTML}{e6f0fe}
39
40\pagestyle{fancy}
41\fancyhead[LO,LE]{Year 12 Specialist - Dynamics}
42\fancyhead[CO,CE]{Andrew Lorimer}
43
44\setlength\parindent{0pt}
45
46\begin{document}
47
48\title{Dynamics}
49\author{}
50\date{}
51\maketitle
52
53\section{Resolution of forces}
54
55\textbf{Resultant force} is sum of force vectors
56
57\subsection*{In angle-magnitude form}
58
59\makebox[3cm]{Cosine rule:} \(c^2=a^2+b^2-2ab\cos\theta\)
60\makebox[3cm]{Sine rule:} \(\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}\)
61
62\subsection*{In \(\boldsymbol{i}\)---\(\boldsymbol{j}\) form}
63
64Vector of \(a\) N at \(\theta\) to \(x\) axis is equal to \(a \cos \theta \boldsymbol{i} + a \sin \theta \boldsymbol{j}\). Convert all force vectors then add.
65
66To find angle of an \(a\boldsymbol{i} + b\boldsymbol{j}\) vector, use \(\theta = \tan^{-1} \frac{b}{a}\)
67
68\subsection*{Resolving in a given direction}
69
70The resolved part of a force \(P\) at angle \(\theta\) is has magnitude \(P \cos \theta\)
71
72To convert force \(||\vec{OA}\) to angle-magnitude form, find component \(\perp\vec{OA}\) then \(|\boldsymbol{r}|=\sqrt{\left(||\vec{OA}\right)^2 + \left(\perp\vec{OA}\right)^2},\quad \theta = \tan^{-1}\dfrac{\perp\vec{OA}}{||\vec{OA}}\)
73
74\section{Newton's laws}
75
76\begin{tcolorbox}
77 \begin{enumerate}
78 \item Velocity is constant without a net external velocity
79 \item \(\frac{d}{dt} \rho \propto \Sigma F \implies \boldsymbol{F}=m\boldsymbol{a}\)
80 \item Equal and opposite forces
81 \end{enumerate}
82\end{tcolorbox}
83
84\subsection*{Weight}
85A mass of \(m\) kg has force of \(mg\) acting on it
86
87\subsection*{Momentum \(\rho\)}
88\[ \rho = mv \tag{units kg m/s or Ns} \]
89
90\subsection*{Reaction force \(R\)}
91
92\begin{itemize}
93 \item With no vertical velocity, \(R=mg\)
94 \item With upwards acceleration, \(R-mg=ma\)
95 \item With force \(F\) at angle \(\theta\), then \(R=mg-F\sin\theta\)
96\end{itemize}
97
98\subsection*{Friction}
99
100\[ F_R = \mu R \tag{friction coefficient} \]
101
102\section{Inclined planes}
103
104\[ \boldsymbol{F} = |\boldsymbol{F}| \cos \theta \boldsymbol{i} + |\boldsymbol{F}| \sin \theta \boldsymbol{j} \]
105\begin{itemize}
106 \item Normal force \(R\) is at right angles to plane
107 \item Let direction up the plane be \(\boldsymbol{i}\) and perpendicular to plane \(\boldsymbol{j}\)
108\end{itemize}
109
110\def\iangle{30} % Angle of the inclined plane
111
112\def\down{-90}
113\def\arcr{0.5cm} % Radius of the arc used to indicate angles
114
115\tikzset{
116 force/.style={->,draw=blue,fill=blue},
117 axis/.style={densely dashed,gray,font=\small},
118 M/.style={rectangle,draw,fill=lightgray,minimum size=0.5cm,thin},
119 m/.style={rectangle,draw=black,fill=lightgray,minimum size=0.3cm,thin},
120 plane/.style={draw=black,fill=blue!10},
121 string/.style={draw=red, thick},
122 pulley/.style={thick}
123}
124
125\begin{figure}[!htb]
126 \centering
127 \begin{tikzpicture}
128
129 \pgfmathsetmacro{\Fnorme}{2}
130 \pgfmathsetmacro{\Fangle}{30}
131
132 \begin{scope}[rotate=\iangle]
133 \node[M,transform shape] (M) {};
134 \coordinate (xmin) at ($(M.south west)-({abs(1.1*\Fnorme*sin(-\Fangle))},0)$);
135 \coordinate (xmax) at ($(M.south east)+({abs(1.1*\Fnorme*sin(-\Fangle))},0)$);
136 \coordinate (ymax) at ($(M.north)+(0, {abs(1.1*\Fnorme*cos(-\Fangle))})$);
137 \coordinate (ymin) at ($(M.south)-(0, 1cm)$);
138 \coordinate (axiscentre) at ($(M.south)+(0.5cm, 0.5cm)$);
139 \draw[postaction={decorate, decoration={border, segment length=2pt, angle=-45},draw,red}] (xmin) -- (xmax);
140 \coordinate (N) at ($(M.center)+(0,{\Fnorme*cos(-\Fangle)})$);
141 \coordinate (fr) at ($(M.center)+({\Fnorme*sin(-\Fangle)}, 0)$);
142 {[axis,-]
143 \draw (ymin) -- (M.center);
144 }
145 {[axis,->]
146 \draw ($(M)+(1,0)$) -- ($(M)+(2,0)$) node[above right] {\(\boldsymbol{i}\)};
147 \draw ($(M)+(1,0)$) -- ($(M)+(1,1)$) node[above right] {\(\boldsymbol{j}\)};
148 }
149 {[force,->]
150 \draw (M.center) -- (N) node [right] {\(R\)};
151 \draw (M.center) -- (fr) node [left] {\(\mu R\)};
152 }
153 \end{scope}
154 \draw[force,->] (M.center) -- ++(0,-1) node[below] {$mg$};
155 \draw (M.center)+(-90:\arcr) arc [start angle=-90,end angle=\iangle-90,radius=\arcr] node [below, pos=.5] {\footnotesize\(\theta\)};
156 \end{tikzpicture}
157\end{figure}
158
159\section{Connected particles}
160
161\begin{itemize}
162 \item \textbf{Suspended pulley:} tension in both sections of rope are equal
163 \item \textbf{Linear connection:} find acceleration of system first
164 \item \textbf{Pulley on right angle:} \(a = \frac{m_2g}{m_1+m_2}\) where \(m_2\) is suspended (frictionless on both surfaces)
165 \item \textbf{Pulley on edge of incline:} find downwards force \(W_2\) and components of mass on plane
166\end{itemize}
167
168\def\boxwidth{0.5}
169\tikzset{
170 box/.style={rectangle,draw,fill=lightgray,minimum width=\boxwidth,thin},
171 m/.style={rectangle,draw=black,fill=lightgray,minimum size=\boxwidth, font=\footnotesize, thin}
172}
173
174
175\begin{figure}[!htb]
176 \centering
177 \begin{tikzpicture}
178
179 \matrix[column sep=1cm] {
180 \begin{scope}
181
182 \coordinate (O) at (0,0);
183 \coordinate (A) at ($({3*cos(\iangle)},{3*sin(\iangle)})$);
184 \coordinate (B) at ($({3*cos(\iangle)},0)$);
185 \coordinate (C) at ($({(1.5-0.5*\boxwidth)*cos(\iangle)},{(1.5-0.5*\boxwidth)*sin(\iangle)})$); % centre of box
186 \coordinate (D) at ($(C)+(\iangle:\boxwidth)$);
187 \coordinate (E) at ($(D)+(90+\iangle:0.5*\boxwidth)$);
188 \coordinate (F) at ($(B)+(0,{1.5*sin(\iangle)})$);
189 \coordinate (X) at ($(A)+(\iangle:0.5*\boxwidth)$); % centre of pulley
190 \coordinate (Y) at ($(X)+(90+\iangle:0.5*\boxwidth)$); % chord of pulley
191
192 \draw[plane] (O) -- (A) -- (B) -- (O);
193 \draw (O)+(\arcr,0) arc [start angle=0,end angle=\iangle,radius=\arcr] node [right, pos=.75] {\footnotesize\(\theta\)};
194
195 \draw [rotate=\iangle, m] (C) rectangle ++(\boxwidth,\boxwidth) node (z) [rotate=\iangle, midway, font=\footnotesize] {\(m_1\)};
196 \draw [pulley] (A) -- (X) ++(0.5*\boxwidth, 0) arc[rotate=\iangle, start angle=0, delta angle=360, x radius=0.25, y radius=0.25] node(r) [midway, rotate=\iangle] {};
197 \draw [string] (E) -- (Y) arc (90+\iangle:0:0.25) -- ++($(0,{-1.5*sin(\iangle)})$) node[m] {\(m_2\)};
198
199 \end{scope}
200
201 &
202
203 \begin{scope}[rotate=\iangle]
204
205 \draw [m] ++(-0.5*\boxwidth,-0.5*\boxwidth) rectangle ++(\boxwidth,\boxwidth) node (m1) [rotate=\iangle, midway, font=\footnotesize] {\(m_1\)};
206
207 {[axis,-]
208 \draw (0,-1) -- (0,0);
209 \draw[solid,shorten >=0.5pt] (\down-\iangle:\arcr) arc(\down-\iangle:\down:\arcr);
210 \node at (\down-0.5*\iangle:1.3*\arcr) {\(\theta\)};
211 }
212
213 {[force,->]
214 \draw (M.center) -- ++(0,{cos(\iangle)}) node[above right] {\(R_1\)};
215 \draw (M.west) -- ++(-0.5,0) node[left] {\(\mu R_1\)};
216 \draw (M.east) -- ++(1,0) node[above] {\(T_1\)};
217 }
218
219 \draw[force,->, rotate=-\iangle] (M.center) -- ++(0,-1) node[below] {\(m_1 g\)};
220
221 \end{scope}
222
223 &
224
225 \draw [m] ++(-0.5*\boxwidth,-0.5*\boxwidth) rectangle ++(\boxwidth,\boxwidth) node [midway, font=\footnotesize] {\(m_2\)};
226
227 {[force,->]
228 \draw (0,0.5*\boxwidth) -- ++(0,1) node[above] {\(T_2\)};
229 \draw (0,-0.5*\boxwidth) -- ++(0,-1) node[right] {\(m_2 g\)};
230 }
231 \\
232 };
233 \end{tikzpicture}
234\end{figure}
235
236\section{Equilibrium}
237
238\[ \dfrac{A}{\sin a} = \dfrac{B}{\sin b} = \dfrac{C}{\sin c} \tag{Lami's theorem}\]
239
240Three methods:
241\begin{enumerate}
242 \item Lami's theorem (sine rule)
243 \item Triangle of forces or CAS (use to verify)
244 \item Resolution of forces (\(\Sigma F = 0\) - simultaneous)
245\end{enumerate}
246
247\colorbox{cas}{On CAS:} use Geometry, lock known constants.
248
249\section{Variable forces (DEs)}
250
251\[ a = \dfrac{d^2x}{dt^2} = \dfrac{dv}{dt} = v\dfrac{dv}{dx} = \dfrac{d}{dx} \left( \frac{1}{2} v^2 \right) \]
252
253\end{document}