1# Complex & Imaginary Numbers
2
3## Imaginary numbers
4
5$i^2 = -1$
6
7$\therefore i = \sqrt {-1}$
8
9### Simplifying negative surds
10
11$\sqrt{-2} = \sqrt{-1 \times 2}$
12$= \sqrt{2}i$
13
14
15## Complex numbers
16
17$\mathbb{C} = \{a+bi : a, b \in \mathbb{R} \}$
18
19General form: $z=a+bi$
20- $\operatorname{Re}(z) = a$
21- $\operatorname{Im}(z) = b$
22
23### Addition
24
25If $z_1 = a+bi$ and $z_2=c+di$, then
26$z_1+z_2 = (a+c)+(b+d)i$
27
28### Subtraction
29
30If $z_1=a+bi$ and $z_2=c+di$, then $z_1−z_2=(a−c)+(b−d)i$
31
32### Multiplication by a real constant
33
34If $z=a+bi$ and $k \in \mathbb{R}$, then $kz=ka+kbi$
35
36### Powers of $i$
37$i^0=1$
38$i^1=i$
39$i^2=-1$
40$i^3=-i$
41$i^4=1$
42$\dots$
43
44Therefore..
45
46- $i^{4n} = 1$
47- $i^{4n+1} = i$
48- $i^{4n+2} = -1$
49- $i^{4n+3} = -i$
50
51Divide by 4 and take remainder.
52
53### Multiplying complex expressions
54
55If $z_1 = a+bi$ and $z_2=c+di$, then
56$z_1 \times z_2 = (ac-bd)+(ad+bc)i$
57
58### Conjugates
59
60If $z=a+bi$, conjugate of $z$ is $\overline{z} = a-bi$ (flipped operator)
61
62Also, $z \overline{z} = (a+bi)(a-bi) = a^2+b^2$
63
64- Multiplication and addition are associative
65
66### Modulus
67
68Distance from origin.
69$|{z}|=\sqrt{a^2+b^2}$
70
71$\therefore z \overline{z} = |z|^2$
72
73### Multiplicative inverse
74
75$z^{-1} = {1 \over z} = {{a-bi} \over {a^2+B^2}} = {\overline{z} \over {|z|^2}}$
76
77### Dividing complex numbers
78
79${{z_1} \over {z_2}} = {{z_1\ {z_2}^{-1}}} = {{z_1 \overline{z_2}} \over {{|z_2|}^2}}$
80
81(using multiplicative inverse)
82
83In practice, rationalise denominator:
84${z_1 \over z_2} = {{(a+bi)(c-di)} \over {c^2+d^2}}$
85
86## Argand planes
87
88- Geometric representation of $\mathbb{C}$
89- Horizontal $= \operatorname{Re}(z)$; vertical $= \operatorname{Im}(z)$
90- Multiplication by $i$ results in an anticlockwise rotation of $\pi \over 2$
91
92## Solving complex quadratics
93
94To solve $z^2+a^2=0$ (sum of two squares):
95
96$z^2+a^2=z^2-(ai)^2=(z+ai)(z-ai)$
97
98## Polar form
99
100General form:
101$z=r \operatorname{cis} \theta$
102$= r\operatorname{cos}\theta+r\operatorname{sin}\theta i$
103
104where
105- $z=a+bi$
106- $r$ is the distance from origin, given by Pythagoras ($r=\sqrt{x^2+y^2}$)
107- $\theta$ is the argument of $z$, CCW from origin
108
109Note each complex number has multiple polar representations:
110$z=r \operatorname{cis} \theta = r \operatorname{cis} (\theta+2 n\pi$) where $n$ is integer number of revolutions
111
112### Multiplication and division in polar form
113
114$z_1z_2=r_1r_2\operatorname{cis}(\theta_1+\theta_2)$ (multiply moduli, add angles)
115
116${z_1 \over z_2} = {r_1 \over r_2} \operatorname{cis}(\theta_1-\theta_2)$ (divide moduli, subtract angles)
117
118## de Moivres' Theorum
119
120$(r\operatorname{cis}\theta)^n=r^n\operatorname{cis}(n\theta)$