1---
2geometry: margin=2cm
3columns: 2
4graphics: yes
5---
6# Circular functions
7
8<!-- ## Radians and degrees -->
9
10<!-- $$1 \thinspace \operatorname{rad}={{180 \operatorname{deg}}\over \pi}$$ -->
11
12## Exact values
13
14\includegraphics[width=0.2\textwidth]{./graphics/exact-values-1.png}
15\includegraphics[width=0.2\textwidth]{./graphics/exact-values-2.png}
16
17<!-- ![diag](graphics/exact-values-1.png) -->
18<!-- ![diag](graphics/exact-values-2.png) -->
19
20## $\sin$ and $\cos$ graphs
21
22$$f(x)=a \sin(bx-c)+d$$
23$$f(x)=a \cos(bx-c)+d$$
24
25where
26
27- $a$ is the $y$-dilation (amplitude)
28- $b$ is the $x$-dilation (period)
29- $c$ is the $x$-shift (phase)
30- $d$ is the $y$-shift (equilibrium position)
31
32
33Domain is $\mathbb{R}$
34
35Range is $[-b+c, b+c]$;
36
37Graph of $\cos(x)$ starts at $(0,1)$. Graph of $\sin(x)$ starts at $(0,0)$.
38
39**Mean / equilibrium:** line that the graph oscillates around ($y=d$)
40
41### Amplitude
42
43Graph oscillates between $+a$ and $-a$ in $y$-axis
44
45$a=0$ produces straight line
46
47$a < 0$ inverts the phase ($\sin$ becomes $\cos$, vice vera)
48
49### Period
50
51Period $T$ is ${2 \pi}\over b$
52
53$b=0$ produces straight line
54
55$b<0$ inverts the phase
56
57### Phase
58
59$c$ moves the graph left-right in the $x$ axis.
60
61If $c=T={{2\pi}\over b}$, the graph has no actual phase shift.
62
63## Symmetry
64
65$$\sin(\theta+{\pi\over 2})=\sin\theta$$
66$$\sin(\theta+\pi)=-\sin\theta$$
67
68$$\cos(\theta+{\pi \over 2})=-\cos\theta$$
69$$\cos(\theta+\pi)=-cos(\theta+{3\pi \over 2})=\cos(-\theta)$$
70
71## Pythagorean identity
72
73$$\cos^2\theta+\sin^2\theta=1$$
74
75## Complementary relationships
76
77$$\sin({\pi \over 2} - \theta)=\cos\theta$$
78$$\cos({\pi \over 2} - \theta)=\sin\theta$$
79
80$$\sin\theta=-\cos(\theta+{\pi \over 2})$$
81$$\cos\theta=\sin(\theta+{\pi \over 2})$$
82
83## $\tan$ graph
84
85$$y=a\tan(nx)$$
86
87where
88
89- $a$ is $x$-dilation (period)
90- $n$ is $y$-dilation ($\equiv$ amplitude)
91- period $T$ is $\pi \over n$
92- range is $R$
93- roots at $x={k\pi \over n}$
94- asymptotes at $x={{(2k+1)\pi}\over 2n},\quad k \in \mathbb{Z}$
95
96**Asymptotes should always have equations and arrow pointing up**
97
98## Solving trig equations
99
1001. Solve domain for $n\theta$
1012. Find solutions for $n\theta$
1023. Divide solutions by $n$
103
104$\sin2\theta={\sqrt{3}\over2}, \quad \theta \in[0, 2\pi] \quad(\therefore 2\theta \in [0,4\pi])$
105
106$2\theta=\sin^{-1}{\sqrt{3} \over 2}$
107
108$2\theta={\pi\over 3}, {2\pi \over 3}, {7\pi \over 3}, {8\pi \over 3}$
109
110$\therefore \theta = {\pi \over 6}, {\pi \over 3}, {7 \pi \over 6}, {4\pi \over 3}$