chem / energy-sources.texon commit [chem] corrections & addition on chiral molecules (db5b8c3)
   1\documentclass{article}
   2\usepackage[version=4]{mhchem}
   3\usepackage[margin=0.2cm]{geometry}
   4\usepackage{array}
   5\pagenumbering{gobble}
   6\begin{document}
   7
   8\title{Comparison of Energy Sources}
   9\author{Andrew Lorimer}
  10\date{}
  11
  12\renewcommand{\abstractname}{}
  13\maketitle
  14
  15\begin{center}
  16    \begin{tabular}{ | m{0.1\textwidth} | m{0.07\textwidth} | m{0.13\textwidth} | m{0.13\textwidth} | m{0.13\textwidth} | m{0.26\textwidth} |}
  17    \hline
  18    \textbf{Energy source} & \textbf{Energy content} & \textbf{Renewability} & \textbf{Environmental impacts of extraction} & \textbf{Environmental impacts of combustion} & \textbf{Key combustion equation/s} \\ \hline
  19    Coal (brown/black) & Black: 34 kJ/g; Brown: 16 kJ/g & Non-renewable - produced by fossilised plant material (millions of years) & Destruction of vegetation, pollution due to mine waste, greenhouse emissions from transport \& mining machinery & Acid rain (\ce{SO2}), greenhouse gas emissions (accelerates climate change), air pollution (e.g. smog) & Complete: \ce{C(s) + O2(g) -> CO2(g)} \newline Incomplete: \ce{2C(s) + O2(g) -> 2CO(g)}\\ \hline
  20    Crude oil & 30 kJ/g& Non-renewable - organisms fossilised over millions of years. Limited worldwide supply& Transport by road \& sea releases greenhouse gases.
  21 & Toxic \ce{CO} with incomplete combustion, produces \ce{CO2} contributing to climate change. & Complete: \ce{2C16H34(l) + 49O2(g) -> 32CO2(g) + 34H2O(g)} \newline Incomplete: \ce{2C16H34(l) + 17O2(g) -> 32C(s) + 34H2O(g)} \\ \hline
  22    Petroleum gas & 48 kJ/g & Non-renewable (derived from crude oil) & Refinement causes hydrocarbon pollution of air & Uncombusted hydrocarbons may be released (\ce{CO(g)}), causing photochemical smog.
  23 & Complete: \ce{2C8H18(l) + 25O2(g) -> 16CO2(g) + 18H2O(g)}; $\Delta H = 5.51$ MJ/mol octane \newline Incomplete: \ce{2C8H18(l) + 17O2(g) -> 16CO(g) + 18H2O(g)}\\ \hline
  24    Coal seam gas & $\approx54$ kJ/g (nat. gas)& Non-renewable (byproduct of natural coal production) & Destruction of vegetation \& geology (drilling), pollution of aquifers & Greenhouse gas emissions & Methane (complete): \hspace{4em}\ce{CH4(g) + 2O2(g) -> CO2(g) + 2H2O(g)} \\ \hline
  25    Biogas & 26 kJ/g & Very renewable - sourced from anaerobically decaying organic waste (e.g. manure). Currently low worldwide supply. & Relief of landfill. Reduces air pollution from waste. May require damaging boring \& trenching. & Low odour \& smoke. Produces greenhouse gases like other methane-based fuels. & Methane (complete): \hspace{4em}\ce{CH4(g) + 2O2(g) -> CO2(g) + 2H2O(g)} \\ \hline
  26    Bioethanol & 30 kJ/g& Very renewable - sourced from fermented sugars (e.g. wheat starch, molasses). Combining with E10 reduces renewability. & Comsumption of agricultural waste (landfill reduction). More land dedicated to bioethanol sources, less for food agriculture. & Produces \ce{CO(g)} and hydrocarbons (greenhouse gases) without E10. Produces \ce{CO2(g)} with E10. Can corrode engines (high water retention).& \ce{C2H5OH(l) + 3O2(g) -> 2CO2(g) + 3H2O(l)}; $\Delta H = 1370$ kJ/mol \\ \hline
  27    Biodiesel & 42 kJ/g& Very renewable - sourced from used cooking oil, tallow, oil seed crops & Consumption of waste (landfill reduction). Less space for agriculture \& forests. Biodegradable. Byproducts (glycerol) can be used elsewhere. & Similar to petrodiesel - produces \ce{CO2(g)} (greenhouse gas), contributing to air pollution \& climate change & \ce{C17H29COOCH3(l) + 26O2(g) -> 19CO2(g) + 16H2O(g)} \\ \hline
  28
  29    \hline
  30    \end{tabular}
  31  \end{center}
  32
  33\newgeometry{margin=1.5cm}
  34  \begin{center}
  35    \begin{tabular}{ | m{0.08\textwidth} | m{0.09\textwidth} | m{0.13\textwidth} | m{0.13\textwidth} | m{0.17\textwidth} | m{0.19\textwidth} |}
  36    \hline
  37    \textbf{Fuel type} & \textbf{Acquired from} & \textbf{Chemical structures} & \textbf{Combustion products} & \textbf{Fuel line flow} & \textbf{Environmental impacts} \\ \hline
  38
  39    Petrodiesel & Refined crude oil (decaying marine life) & Alkanes (\ce{C_n H_{2n+1}}) - 12-24 \ce{C} atoms / molecule & Complete: \ce{CO2(g), H2O(g)} \newline Incomplete: \ce{C(s), H2O(g)} \newline Minor products: \ce{SO2, NO_x, CO} & Freezes at $\approx -8 ^\circ$ C. Viscoscity $\propto$ 1 / temperature. Gels at $-19 ^\circ$ C due to viscoscity. Vaporises at $\approx 370^\circ C$. Not significantly hygroscopic - inconducive to bacteria \& corrosion. & Extraction: destruction of marine environment, transport emissions, oil spills. \newline Refinement: hydrocarbon byproducts pollute air. \newline Combustion: greenhouse effect (climate change), air pollution e.g. photochemical smog, noise pollution. \\ \hline
  40    Biodiesel & Fatty acids from plants \& animals - byproducts e.g. cooking oil, tallow, oil seed crops & Alcohol esters (\ce{C_n H_{2n+1} OH}). Fats (esters between fatty acids \& glycerol) reac with an alcohol e.g. methanol with a catalyst (transesterification). & Same emissions as petrodiesel, but $n[\ce{CO2(g)}]$ and $n[\ce{H2O(g)}]$ are lower. Higher \ce{NO_x} emission. & Freezes at $2^\circ$ C. Hygroscopic - gels at a higher temperature than petrodiesel (causes engine blockages) and accelerates growth \& rust. & Lower greenhouse gas emissions than petrodiesel. Biodegradable. Consumes waste. May consume land for agriculture or natural heritage (deforestation). \\ \hline
  41
  42    \end{tabular}
  43
  44
  45\end{center}
  46
  47\bibliographystyle{plain}
  48\bibliography{energy-sources}
  49\nocite{*}
  50
  51\end{document}