1# Antidifferentiation
2
3If $F'(x)=f(x)$, then $\int f(x) \cdot dx = F(x) + c$
4
5$$\int x^n \cdot dx = {x^{n+1} \over {n+1}} + c, \quad n \in \mathbb{N} \cup \{0\}$$
6
7Rules:
8
9$\int [f(x) \pm g(x)] \cdot dx = \int f(x) \cdot dx \pm \int g(x) \cdot dx$
10$\int kf(x) \cdot dx = k \int f(x) \cdot dx$, where $k \in \mathbb{R}$
11
12## Applications of differentiation to kinematics
13
14Kinematics - straight line motion of a particle
15
16Instantaneous velocity - dx/dt
17
18## Newton's method
19
20$$x_{n+1}=x_n - {f(x_n) \over f^\prime(x_n)}$$
21
22or
23
24$$x_1=x_0 - {f(x_0) \over f^\prime(x_0)}$$