spec / spec-collated.texon commit [spec] copy notes for circ. fn's & calculus (untidied) (f37f49c)
   1\documentclass[a4paper]{article}
   2\usepackage[a4paper,margin=2cm]{geometry}
   3\usepackage{multicol}
   4\usepackage{multirow}
   5\usepackage{amsmath}
   6\usepackage{amssymb}
   7\usepackage{harpoon}
   8\usepackage{tabularx}
   9\usepackage[dvipsnames, table]{xcolor}
  10\usepackage{graphicx}
  11\usepackage{wrapfig}
  12\usepackage{tikz}
  13\usepackage{tikz-3dplot} 
  14\usetikzlibrary{calc}
  15\usetikzlibrary{angles}
  16\usepgflibrary{arrows.meta}
  17\usepackage{fancyhdr}
  18\pagestyle{fancy}
  19\fancyhead[LO,LE]{Year 12 Specialist}
  20\fancyhead[CO,CE]{Andrew Lorimer}
  21
  22\usepackage{mathtools}
  23\usepackage{xcolor} % used only to show the phantomed stuff
  24\renewcommand\hphantom[1]{{\color[gray]{.6}#1}} % comment out!
  25\setlength\fboxsep{0pt} \setlength\fboxrule{.2pt} % for the \fboxes
  26\newcommand*\leftlap[3][\,]{#1\hphantom{#2}\mathllap{#3}}
  27\newcommand*\rightlap[2]{\mathrlap{#2}\hphantom{#1}}
  28\newcolumntype{L}[1]{>{\hsize=#1\hsize\raggedright\arraybackslash}X}%
  29\newcolumntype{R}[1]{>{\hsize=#1\hsize\raggedleft\arraybackslash}X}%
  30\definecolor{cas}{HTML}{e6f0fe}
  31\linespread{1.5}
  32\newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);}
  33
  34\begin{document}
  35
  36\begin{multicols}{2}
  37
  38  \section{Complex numbers}
  39
  40    \[\mathbb{C}=\{a+bi:a,b\in\mathbb{R}\}\]
  41
  42    \begin{align*}
  43      \text{Cartesian form: } & a+bi\\
  44      \text{Polar form: } & r\operatorname{cis}\theta
  45    \end{align*}
  46
  47    \subsection*{Operations}
  48
  49\definecolor{shade1}{HTML}{ffffff}
  50\definecolor{shade2}{HTML}{e6f2ff}
  51  \definecolor{shade3}{HTML}{cce2ff}
  52      \begin{tabularx}{\columnwidth}{r|X|X}
  53        & \textbf{Cartesian} & \textbf{Polar} \\
  54        \hline
  55        \(z_1 \pm z_2\) & \((a \pm c)(b \pm d)i\) & convert to \(a+bi\)\\
  56        \hline
  57        \(+k \times z\) & \multirow{2}{*}{\(ka \pm kbi\)} & \(kr\operatorname{cis} \theta\)\\
  58        \cline{1-1}\cline{3-3}
  59        \(-k \times z\) & & \(kr \operatorname{cis}(\theta\pm \pi)\)\\
  60        \hline
  61        \(z_1 \cdot z_2\) & \(ac-bd+(ad+bc)i\) & \(r_1r_2 \operatorname{cis}(\theta_1 + \theta_2)\)\\
  62        \hline
  63        \(z_1 \div z_2\) & \((z_1 \overline{z_2}) \div |z_2|^2\) & \(\left(\frac{r_1}{r_2}\right) \operatorname{cis}(\theta_1 - \theta_2)\)
  64      \end{tabularx}
  65
  66      \subsubsection*{Scalar multiplication in polar form}
  67      
  68        For \(k \in \mathbb{R}^+\):
  69        \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\theta\]
  70
  71        \noindent For \(k \in \mathbb{R}^-\):
  72        \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\left(\begin{cases}\theta - \pi & |0<\operatorname{Arg}(z)\le \pi \\ \theta + \pi & |-\pi<\operatorname{Arg}(z)\le 0\end{cases}\right)\]
  73
  74    \subsection*{Conjugate}
  75
  76      \begin{align*}
  77        \overline{z} &= a \mp bi\\
  78        &= r \operatorname{cis}(-\theta)
  79      \end{align*}
  80
  81      \noindent \colorbox{cas}{On CAS: \texttt{conjg(a+bi)}}
  82
  83      \subsubsection*{Properties}
  84
  85        \begin{align*}
  86          \overline{z_1 \pm z_2} &= \overline{z_1}\pm\overline{z_2}\\
  87          \overline{z_1 \cdot z_2} &= \overline{z_1}\cdot\overline{z_2}\\
  88          \overline{kz} &= k\overline{z} \quad | \quad k \in \mathbb{R}\\
  89          z\overline{z} &= (a+bi)(a-bi)\\
  90          &= a^2 + b^2\\
  91          &= |z|^2
  92        \end{align*}
  93
  94    \subsection*{Modulus}
  95
  96      \[|z|=|\vec{Oz}|=\sqrt{a^2 + b^2}\]
  97
  98      \subsubsection*{Properties}
  99
 100        \begin{align*}
 101          |z_1z_2|&=|z_1||z_2|\\
 102          \left|\frac{z_1}{z_2}\right|&=\frac{|z_1|}{|z_2|}\\
 103          |z_1+z_2|&\le|z_1|+|z_2|
 104        \end{align*}
 105
 106    \subsection*{Multiplicative inverse}
 107
 108      \begin{align*}
 109        z^{-1}&=\frac{a-bi}{a^2+b^2}\\
 110        &=\frac{\overline{z}}{|z|^2}a\\
 111        &=r \operatorname{cis}(-\theta)
 112      \end{align*}
 113
 114    \subsection*{Dividing over \(\mathbb{C}\)}
 115
 116      \begin{align*}
 117        \frac{z_1}{z_2}&=z_1z_2^{-1}\\
 118        &=\frac{z_1\overline{z_2}}{|z_2|^2}\\
 119        &=\frac{(a+bi)(c-di)}{c^2+d^2}\\
 120        & \qquad \text{(rationalise denominator)}
 121      \end{align*}
 122
 123    \subsection*{Polar form}
 124
 125      \begin{align*}
 126        z&=r\operatorname{cis}\theta\\
 127        &=r(\cos \theta + i \sin \theta)
 128      \end{align*}
 129
 130      \begin{itemize}
 131        \item{\(r=|z|=\sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}\)}
 132        \item{\(\theta = \operatorname{arg}(z)\) \quad \colorbox{cas}{On CAS: \texttt{arg(a+bi)}}}
 133        \item{\(\operatorname{Arg}(z) \in (-\pi,\pi)\) \quad \bf{(principal argument)}}
 134        \item{\colorbox{cas}{Convert on CAS:}\\ \verb|compToTrig(a+bi)| \(\iff\) \verb|cExpand{r·cisX}|}
 135        \item{Multiple representations:\\\(r\operatorname{cis}\theta=r\operatorname{cis}(\theta+2n\pi)\) with \(n \in \mathbb{Z}\) revolutions}
 136        \item{\(\operatorname{cis}\pi=-1,\qquad \operatorname{cis}0=1\)}
 137      \end{itemize}
 138
 139    \subsection*{de Moivres' theorem}
 140
 141    \[(r \operatorname{cis} \theta)^n = r^n \operatorname{cis}(n\theta) \text{ where } n \in \mathbb{Z}\]
 142
 143    \subsection*{Complex polynomials}
 144    
 145      Include \(\pm\) for all solutions, incl. imaginary
 146
 147      \begin{tabularx}{\columnwidth}{ R{0.55} X  }
 148        \hline
 149        Sum of squares & \(\begin{aligned} 
 150        z^2 + a^2 &= z^2-(ai)^2\\
 151        &= (z+ai)(z-ai) \end{aligned}\) \\
 152        \hline
 153        Sum of cubes & \(a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)\)\\
 154        \hline
 155        Division & \(P(z)=D(z)Q(z)+R(z)\) \\
 156        \hline
 157        Remainder theorem & Let \(\alpha \in \mathbb{C}\). Remainder of \(P(z) \div (z-\alpha)\) is \(P(\alpha)\)\\
 158        \hline
 159        Factor theorem & \(z-\alpha\) is a factor of \(P(z) \iff P(\alpha)=0\) for \(\alpha \in \mathbb{C}\)\\
 160        \hline
 161        Conjugate root theorem & \(P(z)=0 \text{ at } z=a\pm bi\) (\(\implies\) both \(z_1\) and \(\overline{z_1}\) are solutions)
 162      \end{tabularx}
 163
 164    \subsection*{Roots}
 165
 166      \(n\)th roots of \(z=r\operatorname{cis}\theta\) are:
 167
 168      \[z = r^{\frac{1}{n}} \operatorname{cis}\left(\frac{\theta+2k\pi}{n}\right)\]
 169
 170      \begin{itemize}
 171
 172        \item{Same modulus for all solutions}
 173        \item{Arguments are separated by \(\frac{2\pi}{n}\)}
 174        \item{Solutions of \(z^n=a\) where \(a \in \mathbb{C}\) lie on the circle \(x^2+y^2=\left(|a|^{\frac{1}{n}}\right)^2\) \quad (intervals of \(\frac{2\pi}{n}\))}
 175      \end{itemize}
 176
 177      \noindent For \(0=az^2+bz+c\), use quadratic formula:
 178
 179      \[z=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]
 180
 181    \subsection*{Fundamental theorem of algebra}
 182
 183      A polynomial of degree \(n\) can be factorised into \(n\) linear factors in \(\mathbb{C}\):
 184
 185        \[\implies P(z)=a_n(z-\alpha_1)(z-\alpha_2)(z-\alpha_3)\dots(z-\alpha_n)\]
 186        \[\text{ where } \alpha_1,\alpha_2,\alpha_3,\dots,\alpha_n \in \mathbb{C}\]
 187
 188    \subsection*{Argand planes}
 189    
 190      \begin{center}\begin{tikzpicture}[scale=2]
 191        \draw [->] (-0.2,0) -- (1.5,0) node [right]  {$\operatorname{Re}(z)$};
 192        \draw [->] (0,-0.2) -- (0,1.5) node [above] {$\operatorname{Im}(z)$};
 193        \coordinate (P) at (1,1);
 194        \coordinate (a) at (1,0);
 195        \coordinate (b) at (0,1);
 196        \coordinate (O) at (0,0);
 197        \draw (0,0) -- (P) node[pos=0.5, above left]{\(r\)} node[pos=1, right]{\(\begin{aligned}z&=a+bi\\&=r\operatorname{cis}\theta\end{aligned}\)};
 198        \draw [gray, dashed] (1,1) -- (1,0) node[black, pos=1, below]{\(a\)};
 199        \draw [gray, dashed] (1,1) -- (0,1) node[black, pos=1, left]{\(b\)};
 200        \begin{scope}
 201          \path[clip] (O) -- (P) -- (a);
 202          \fill[red, opacity=0.5, draw=black] (O) circle (2mm);
 203          \node at ($(O)+(20:3mm)$) {$\theta$};
 204        \end{scope}
 205        \filldraw (P) circle (0.5pt);
 206      \end{tikzpicture}\end{center}
 207
 208      \begin{itemize}
 209        \item{Multiplication by \(i \implies\) CCW rotation of \(\frac{\pi}{2}\)}
 210        \item{Addition: \(z_1 + z_2 \equiv\) \overrightharp{\(Oz_1\)} + \overrightharp{\(Oz_2\)}}
 211      \end{itemize}
 212
 213    \subsection*{Sketching complex graphs}
 214      
 215      \subsubsection*{Linear}
 216
 217        \begin{itemize}
 218          \item{\(\operatorname{Re}(z)=c\) or \(\operatorname{Im}(z)=c\) (perpendicular bisector)}
 219          \item{\(\operatorname{Im}(z)=m\operatorname{Re}(z)\)}
 220          \item{\(|z+a|=|z+b| \implies 2(a-b)x=b^2-a^2\)}
 221        \end{itemize}
 222
 223      \subsubsection*{Circles}
 224
 225        \begin{itemize}
 226          \item \(|z-z_1|^2=c^2|z_2+2|^2\)
 227          \item \(|z-(a+bi)|=c\)
 228        \end{itemize}
 229
 230      \noindent \textbf{Loci} \qquad \(\operatorname{Arg}(z)<\theta\)
 231
 232        \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}]
 233          \draw [->] (0,0) -- (1,0) node [right]  {$\operatorname{Re}(z)$};
 234          \draw [->] (0,-0.5) -- (0,1) node [above] {$\operatorname{Im}(z)$};
 235          \draw [<-, dashed, thick, blue] (-1,0) -- (0,0);
 236          \draw [->, thick, blue] (0,0) -- (1,1);
 237          \fill [gray, opacity=0.2, domain=-1:1, variable=\x] (-1,-0.5) -- (-1,0) -- (0, 0) -- (1,1) -- (1,-0.5) -- cycle;
 238          \begin{scope}
 239            \path[clip] (0,0) -- (1,1) -- (1,0);
 240            \fill[red, opacity=0.5, draw=black] (0,0) circle (2mm);
 241            \node at ($(0,0)+(20:3mm)$) {$\frac{\pi}{4}$};
 242          \end{scope}
 243          \node [font=\footnotesize] at (0.5,-0.25) {\(\operatorname{Arg}(z)\le\frac{\pi}{4}\)};
 244          \node [blue, mydot] {};
 245        \end{tikzpicture}\end{center}
 246
 247      \noindent \textbf{Rays} \qquad \(\operatorname{Arg}(z-b)=\theta\)
 248
 249        \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}]
 250          \draw [->] (-0.75,0) -- (1.5,0) node [right]  {$\operatorname{Re}(z)$};
 251          \draw [->] (0,-1) -- (0,1) node [above] {$\operatorname{Im}(z)$};
 252          \draw [->, thick, brown] (-0.25,0) -- (-0.75,-1);
 253          \node [above, font=\footnotesize] at (-0.25,0) {\(\frac{1}{4}\)};
 254          \begin{scope}
 255            \path[clip] (-0.25,0) -- (-0.75,-1) -- (0,0);
 256            \fill[orange, opacity=0.5, draw=black] (-0.25,0) circle (2mm);
 257          \end{scope}
 258          \node at (-0.08,-0.3) {\(\frac{\pi}{8}\)};
 259          \node [font=\footnotesize, left] at (-0.75,-1) {\(\operatorname{Arg}(z+\frac{1}{4})=\frac{\pi}{8}\)};
 260          \node [brown, mydot] at (-0.25,0) {};
 261          \draw [<->, thick, green] (0,-1) -- (1.5,0.5) node [pos=0.25, black, font=\footnotesize, right] {\(|z-2|=|z-(1+i)|\)};
 262          \node [left, font=\footnotesize] at (0,-1) {\(-1\)};
 263          \node [below, font=\footnotesize] at (1,0) {\(1\)};
 264        \end{tikzpicture}\end{center}
 265
 266    \section{Vectors}
 267\begin{center}\begin{tikzpicture}
 268  \draw [->] (-0.5,0) -- (3,0) node [right]  {\(x\)};
 269          \draw [->] (0,-0.5) -- (0,3) node [above] {\(y\)};
 270          \draw [orange, ->, thick] (0.5,0.5) -- (2.5,2.5) node [pos=0.5, above] {\(\vec{u}\)};
 271         \begin{scope}[very thick, every node/.style={sloped,allow upside down}]
 272        \draw [gray, dashed, thick] (0.5,0.5) -- (2.5,0.5) node [pos=0.5] {\midarrow} node[black, pos=0.5, below]{\(x\vec{i}\)};
 273        \draw [gray, dashed, thick] (2.5,0.5) -- (2.5,2.5) node [pos=0.5] {\midarrow};
 274         \end{scope}
 275        \node[black, right] at (2.5,1.5) {\(y\vec{j}\)};
 276
 277\end{tikzpicture}\end{center}
 278
 279\subsection*{Column notation}
 280
 281\[\begin{bmatrix}x\\ y \end{bmatrix} \iff x\boldsymbol{i} + y\boldsymbol{j}\]
 282\(\begin{bmatrix}x_2-x_1\\ y_2-y_1 \end{bmatrix}\) \quad between \(A(x_1,y_1), \> B(x_2,y_2)\)
 283
 284\subsection*{Scalar multiplication}
 285
 286\[k\cdot (x\boldsymbol{i}+y\boldsymbol{j})=kx\boldsymbol{i}+ky\boldsymbol{j}\]
 287
 288\noindent For \(k \in \mathbb{R}^-\), direction is reversed
 289
 290\subsection*{Vector addition}
 291\begin{center}\begin{tikzpicture}[scale=1]
 292          \coordinate (A) at (0,0);
 293          \coordinate (B) at (2,2);
 294          \draw [->, thick, red] (0,0) -- (2,2) node [pos=0.5, below right] {\(\vec{u}=2\vec{i}+2\vec{j}\)};
 295          \draw [->, thick, blue] (2,2) -- (1,4) node [pos=0.5, above right] {\(\vec{v}=-\vec{i}+2\vec{j}\)};
 296          \draw [->, thick, orange] (0,0) -- (1,4) node [pos=0.5, left] {\(\vec{u}+\vec{v}=\vec{i}+4\vec{j}\)};
 297\end{tikzpicture}\end{center}
 298
 299\[(x\boldsymbol{i}+y\boldsymbol{j}) \pm (a\boldsymbol{i}+b\boldsymbol{j})=(x \pm a)\boldsymbol{i}+(y \pm b)\boldsymbol{j}\]
 300
 301\begin{itemize}
 302  \item Draw each vector head to tail then join lines
 303  \item Addition is commutative (parallelogram)
 304  \item \(\boldsymbol{u}-\boldsymbol{v}=\boldsymbol{u}+(-\boldsymbol{v})\)
 305\end{itemize}
 306
 307\subsection*{Magnitude}
 308
 309\[|(x\boldsymbol{i} + y\boldsymbol{j})|=\sqrt{x^2+y^2}\]
 310
 311\subsection*{Parallel vectors}
 312
 313\[\boldsymbol{u} || \boldsymbol{v} \iff \boldsymbol{u} = k \boldsymbol{v} \text{ where } k \in \mathbb{R} \setminus \{0\}\]
 314
 315For parallel vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\):\\
 316\[\boldsymbol{a \cdot b}=\begin{cases}
 317|\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction}\\
 318-|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions}
 319\end{cases}\]
 320%\includegraphics[width=0.2,height=\textheight]{graphics/parallelogram-vectors.jpg}
 321%\includegraphics[width=1]{graphics/vector-subtraction.jpg}
 322
 323\subsection*{Perpendicular vectors}
 324
 325\[\boldsymbol{a} \perp \boldsymbol{b} \iff \boldsymbol{a} \cdot \boldsymbol{b} = 0\ \quad \text{(since \(\cos 90 = 0\))}\]
 326
 327\subsection*{Unit vector \(|\hat{\boldsymbol{a}}|=1\)}
 328\[\begin{split}\hat{\boldsymbol{a}} & = {\frac{1}{|\boldsymbol{a}|}}\boldsymbol{a} \\ & = \boldsymbol{a} \cdot {|\boldsymbol{a}|}\end{split}\]
 329
 330  \subsection*{Scalar product \(\boldsymbol{a} \cdot \boldsymbol{b}\)}
 331
 332
 333\begin{center}\begin{tikzpicture}[scale=2]
 334  \draw [->] (0,0) -- (1,0.5) node [pos=0.5, above left] {\(\boldsymbol{b}\)};
 335  \draw [->] (0,0) -- (1,0) node [pos=0.5, below] {\(\boldsymbol{a}\)};
 336          \begin{scope}
 337            \path[clip] (1,0.5) -- (1,0) -- (0,0);
 338            \fill[orange, opacity=0.5, draw=black] (0,0) circle (2mm);
 339            \node at ($(0,0)+(15:4mm)$) {\(\theta\)};
 340          \end{scope}
 341\end{tikzpicture}\end{center}
 342\begin{align*}\boldsymbol{a} \cdot \boldsymbol{b} &= a_1 b_1 + a_2 b_2 \\  &= |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta \\ &\quad (\> 0 \le \theta \le \pi) \text{ - from cosine rule}\end{align*}
 343\noindent\colorbox{cas}{On CAS: \texttt{dotP({[}a\ b\ c{]},\ {[}d\ e\ f{]})}}
 344
 345\subsubsection*{Properties}
 346
 347\begin{enumerate}
 348\item
 349  \(k(\boldsymbol{a\cdot b})=(k\boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a}\cdot (k\boldsymbol{b})\)
 350\item
 351  \(\boldsymbol{a \cdot 0}=0\)
 352\item
 353  \(\boldsymbol{a} \cdot (\boldsymbol{b} + \boldsymbol{c})=\boldsymbol{a} \cdot \boldsymbol{b} + \boldsymbol{a} \cdot \boldsymbol{c}\)
 354\item
 355  \(\boldsymbol{i \cdot i} = \boldsymbol{j \cdot j} = \boldsymbol{k \cdot k}= 1\)
 356\item
 357  \(\boldsymbol{a} \cdot \boldsymbol{b} = 0 \quad \implies \quad \boldsymbol{a} \perp \boldsymbol{b}\)
 358\item
 359  \(\boldsymbol{a \cdot a} = |\boldsymbol{a}|^2 = a^2\)
 360\end{enumerate}
 361
 362\subsection*{Angle between vectors}
 363
 364\[\cos \theta = {{\boldsymbol{a} \cdot \frac{\boldsymbol{b}}{|\boldsymbol{a}| |\boldsymbol{b}|}} = {\frac{a_1 b_1 + a_2 b_2}{|\boldsymbol{a}| |\boldsymbol{b}|}}\]
 365
 366\noindent \colorbox{cas}{On CAS:} \texttt{angle([a b c], [a b c])}
 367
 368(Action \(\rightarrow\) Vector \(\rightarrow\)Angle)
 369
 370\subsection*{Angle between vector and axis}
 371
 372\noindent For\(\boldsymbol{a} = a_1 \boldsymbol{i} + a_2 \boldsymbol{j} + a_3 \boldsymbol{k}\)
 373which makes angles \(\alpha, \beta, \gamma\) with positive side of
 374\(x, y, z\) axes:
 375\[\cos \alpha = \frac{a_1}{|\boldsymbol{a}|}, \quad \cos \beta = \frac{a_2}{|\boldsymbol{a}|}, \quad \cos \gamma = \frac{a_3}{|\boldsymbol{a}|}\]
 376
 377\noindent \colorbox{cas}{On CAS:} \texttt{angle({[}a\ b\ c{]},\ {[}1\ 0\ 0{]})}\\for angle
 378between \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) and
 379\(x\)-axis
 380
 381\subsection*{Projections \& resolutes}
 382
 383\begin{tikzpicture}[scale=3]
 384  \draw [->, purple] (0,0) -- (1,0.5) node [pos=0.5, above left] {\(\boldsymbol{a}\)};
 385  \draw [->, orange] (0,0) -- (1,0) node [pos=0.5, below] {\(\boldsymbol{u}\)};
 386  \draw [->, blue] (1,0) -- (2,0) node [pos=0.5, below] {\(\boldsymbol{b}\)};
 387          \begin{scope}
 388            \path[clip] (1,0.5) -- (1,0) -- (0,0);
 389            \fill[orange, opacity=0.5, draw=black] (0,0) circle (2mm);
 390            \node at ($(0,0)+(15:4mm)$) {\(\theta\)};
 391          \end{scope}
 392         \begin{scope}[very thick, every node/.style={sloped,allow upside down}]
 393        \draw [gray, dashed, thick] (1,0) -- (1,0.5) node [pos=0.5] {\midarrow} node[black, pos=0.5, right, rotate=-90]{\(\boldsymbol{w}\)};
 394          \end{scope}
 395\draw (0,0) coordinate (O)
 396  (1,0) coordinate (A)
 397  (1,0.5) coordinate (B)
 398  pic [draw,red,angle radius=2mm] {right angle = O--A--B};
 399\end{tikzpicture}
 400
 401\subsubsection*{\(\parallel\boldsymbol{b}\) (vector projection/resolute)}
 402\begin{align*}
 403  \boldsymbol{u}&={{\boldsymbol{a}\cdot\boldsymbol{b}}\over |\boldsymbol{b}|^2}\boldsymbol{b}\\
 404  &=\left({\boldsymbol{a}\cdot{\boldsymbol{b} \over |\boldsymbol{b}|}}\right)\left({\boldsymbol{b} \over |\boldsymbol{b}|}\right)\\
 405  &=(\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}
 406\end{align*}
 407
 408\subsubsection*{\(\perp\boldsymbol{b}\) (perpendicular projection)}
 409\[\boldsymbol{w} = \boldsymbol{a} - \boldsymbol{u}\]
 410
 411\subsubsection*{\(|\boldsymbol{u}|\) (scalar resolute)}
 412\begin{align*}
 413  r_s &= |\boldsymbol{u}|\\
 414  &= \boldsymbol{a} \cdot \hat{\boldsymbol{b}}\\
 415  &=\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|}
 416\end{align*}
 417
 418\subsubsection*{Rectangular (\(\parallel,\perp\)) components}
 419
 420\[\boldsymbol{a}=\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\boldsymbol{b}\cdot\boldsymbol{b}}\boldsymbol{b}+\left(\boldsymbol{a}-\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\boldsymbol{b}\cdot\boldsymbol{b}}\boldsymbol{b}\right)\]
 421
 422
 423\subsection*{Vector proofs}
 424
 425\textbf{Concurrent:} intersection of \(\ge\) 3 lines
 426
 427\begin{tikzpicture}
 428  \draw [blue] (0,0) -- (1,1);
 429  \draw [red] (1,0) -- (0,1);
 430  \draw [brown] (0.4,0) -- (0.6,1);
 431        \filldraw (0.5,0.5) circle (2pt);
 432\end{tikzpicture}
 433
 434\subsubsection*{Collinear points}
 435
 436\(\ge\) 3 points lie on the same line
 437
 438\begin{tikzpicture}
 439  \draw [purple] (0,0) -- (4,1);
 440  \filldraw (2,0.5) circle (2pt) node [above] {\(C\)};
 441  \filldraw (1,0.25) circle (2pt) node [above] {\(A\)};
 442  \filldraw (3,0.75) circle (2pt) node [above] {\(B\)};
 443  \coordinate (O) at (2.8,-0.2);
 444  \node at (O) [below] {\(O\)}; 
 445         \begin{scope}[->, orange, thick] 
 446           \draw (O) -- (2,0.5) node [pos=0.5, above, font=\footnotesize, black] {\(\boldsymbol{c}\)};
 447           \draw (O) -- (1,0.25) node [pos=0.5, below, font=\footnotesize, black] {\(\boldsymbol{a}\)};
 448           \draw (O) -- (3,0.75) node [pos=0.5, right, font=\footnotesize, black] {\(\boldsymbol{b}\)};
 449         \end{scope}
 450\end{tikzpicture}
 451
 452\begin{align*}
 453  \text{e.g. Prove that}\\
 454  \overrightharp{AC}=m\overrightharp{AB} \iff \boldsymbol{c}&=(1-m)\boldsymbol{a}+m\boldsymbol{b}\\
 455  \implies \boldsymbol{c} &= \overrightharp{OA} + \overrightharp{AC}\\
 456  &= \overrightharp{OA} + m\overrightharp{AB}\\
 457  &=\boldsymbol{a}+m(\boldsymbol{b}-\boldsymbol{a})\\
 458  &=\boldsymbol{a}+m\boldsymbol{b}-m\boldsymbol{a}\\
 459  &=(1-m)\boldsymbol{a}+m{b}
 460\end{align*}
 461
 462\begin{align*}
 463  \text{Also, } \implies \overrightharp{OC} &= \lambda \vec{OA} + \mu \overrightharp{OB} \\
 464  \text{where } \lambda + \mu &= 1\\
 465  \text{If } C \text{ lies along } \overrightharp{AB}, & \implies 0 < \mu < 1
 466\end{align*}
 467
 468
 469  \subsubsection*{Useful vector properties}
 470
 471\begin{itemize}
 472\item
 473  \(\boldsymbol{a} \parallel \boldsymbol{b} \implies \boldsymbol{b}=k\boldsymbol{a}\) for some
 474  \(k \in \mathbb{R} \setminus \{0\}\)
 475\item
 476  If \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are parallel with at
 477  least one point in common, then they lie on the same straight line
 478\item
 479  Two vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are
 480  perpendicular if \(\boldsymbol{a} \cdot \boldsymbol{b}=0\)
 481\item
 482  \(\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2\)
 483\end{itemize}
 484
 485\subsection*{Linear dependence}
 486
 487Vectors \(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\) are linearly
 488dependent if they are non-parallel and:
 489
 490\[k\boldsymbol{a}+l\boldsymbol{b}+m\boldsymbol{c} = 0\]
 491\[\therefore \boldsymbol{c} = m\boldsymbol{a} + n\boldsymbol{b} \quad \text{(simultaneous)}\]
 492
 493\(\boldsymbol{a}, \boldsymbol{b},\) and \(\boldsymbol{c}\) are linearly
 494independent if no vector in the set is expressible as a linear
 495combination of other vectors in set, or if they are parallel.
 496
 497Vector \(\boldsymbol{w}\) is a linear combination of vectors
 498\(\boldsymbol{v_1}, \boldsymbol{v_2}, \boldsymbol{v_3}\)
 499
 500\subsection*{Three-dimensional vectors}
 501
 502Right-hand rule for axes: \(z\) is up or out of page.
 503
 504\tdplotsetmaincoords{60}{120} 
 505\begin{center}\begin{tikzpicture} [scale=3, tdplot_main_coords, axis/.style={->,thick}, 
 506vector/.style={-stealth,red,very thick}, 
 507vector guide/.style={dashed,gray,thick}]
 508
 509%standard tikz coordinate definition using x, y, z coords
 510\coordinate (O) at (0,0,0);
 511
 512%tikz-3dplot coordinate definition using x, y, z coords
 513
 514\pgfmathsetmacro{\ax}{1}
 515\pgfmathsetmacro{\ay}{1}
 516\pgfmathsetmacro{\az}{1}
 517
 518\coordinate (P) at (\ax,\ay,\az);
 519
 520%draw axes
 521\draw[axis] (0,0,0) -- (1,0,0) node[anchor=north east]{$x$};
 522\draw[axis] (0,0,0) -- (0,1,0) node[anchor=north west]{$y$};
 523\draw[axis] (0,0,0) -- (0,0,1) node[anchor=south]{$z$};
 524
 525%draw a vector from O to P
 526\draw[vector] (O) -- (P);
 527
 528%draw guide lines to components
 529\draw[vector guide]         (O) -- (\ax,\ay,0);
 530\draw[vector guide] (\ax,\ay,0) -- (P);
 531\draw[vector guide]         (P) -- (0,0,\az);
 532\draw[vector guide] (\ax,\ay,0) -- (0,\ay,0);
 533\draw[vector guide] (\ax,\ay,0) -- (0,\ay,0);
 534\draw[vector guide] (\ax,\ay,0) -- (\ax,0,0);
 535\node[tdplot_main_coords,above right]
 536at (\ax,\ay,\az){(\ax, \ay, \az)};
 537\end{tikzpicture}\end{center}
 538
 539\subsection*{Parametric vectors}
 540
 541Parametric equation of line through point \((x_0, y_0, z_0)\) and
 542parallel to \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) is:
 543
 544\begin{equation}\begin{cases}x = x_o + a \cdot t \\ y = y_0 + b \cdot t \\ z = z_0 + c \cdot t\end{cases}\end{equation}
 545
 546\section{Circular functions}
 547
 548Period of \(a\sin(bx)\) is \(\frac{{2\pi}{b}\)
 549
 550Period of \(a\tan(nx)\) is \(\frac{\pi}{n}\)\\
 551Asymptotes at \(x=\frac{2k+1)\pi}{2n} \> \vert \> k \in \mathbb{Z}\)
 552
 553\subsection*{Reciprocal functions}
 554
 555\subsubsection*{Cosecant}
 556
 557\begin{figure}
 558\centering
 559\includegraphics{graphics/csc.png}
 560\caption{}
 561\end{figure}
 562
 563\[\operatorname{cosec} \theta = \frac{1}{\sin \theta} \> \vert \> \sin \theta \ne 0\]
 564
 565\begin{itemize}
 566\tightlist
 567\item
 568  \textbf{Domain} \(= \mathbb{R} \setminus {n\pi : n \in \mathbb{Z}}\)
 569\item
 570  \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\)
 571\item
 572  \textbf{Turning points} at
 573    \(\theta = {\frac{(2n + 1)\pi}{2} \> \vert \> n \in \mathbb{Z}\)
 574\item
 575  \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
 576\end{itemize}
 577
 578\subsubsection*{Secant}
 579
 580\begin{figure}
 581\centering
 582\includegraphics{graphics/sec.png}
 583\caption{}
 584\end{figure}
 585
 586\[\operatorname{sec} \theta = \frac{1}{\cos \theta} \> \vert \> \cos \theta \ne 0\]
 587
 588\begin{itemize}
 589\tightlist
 590\item
 591  \textbf{Domain}
 592  \(= \mathbb{R} \setminus \{{{(2n + 1) \pi} \over 2 } : n \in \mathbb{Z}\}\)
 593\item
 594  \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\)
 595\item
 596  \textbf{Turning points} at
 597  \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
 598\item
 599  \textbf{Asymptotes} at
 600  \(\theta = {{(2n + 1) \pi} \over 2} \> \vert \> n \in \mathbb{Z}\)
 601\end{itemize}
 602
 603\subsubsection*{Cotangent}
 604
 605\begin{figure}
 606\centering
 607\includegraphics{graphics/cot.png}
 608\caption{}
 609\end{figure}
 610
 611\[\operatorname{cot} \theta = {{\cos \theta} \over {\sin \theta}} \> \vert \> \sin \theta \ne 0\]
 612
 613\begin{itemize}
 614\tightlist
 615\item
 616  \textbf{Domain} \(= \mathbb{R} \setminus \{n \pi: n \in \mathbb{Z}\}\)
 617\item
 618  \textbf{Range} \(= \mathbb{R}\)
 619\item
 620  \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
 621\end{itemize}
 622
 623\subsubsection*{Symmetry properties}
 624
 625\begin{equation}\begin{split}
 626  \operatorname{sec} (\pi \pm x) & = -\operatorname{sec} x \\
 627  \operatorname{sec} (-x) & = \operatorname{sec} x \\
 628  \operatorname{cosec} (\pi \pm x) & = \mp \operatorname{cosec} x \\
 629  \operatorname{cosec} (-x) & = - \operatorname{cosec} x \\
 630  \operatorname{cot} (\pi \pm x) & = \pm \operatorname{cot} x \\
 631  \operatorname{cot} (-x) & = - \operatorname{cot} x
 632\end{split}\end{equation}
 633
 634\subsubsection*{Complementary properties}
 635
 636\begin{equation}\begin{split}
 637  \operatorname{sec} \left({\pi \over 2} - x\right) & = \operatorname{cosec} x \\
 638  \operatorname{cosec} \left({\pi \over 2} - x\right) & = \operatorname{sec} x \\
 639  \operatorname{cot} \left({\pi \over 2} - x\right) & = \tan x \\
 640  \tan \left({\pi \over 2} - x\right) & = \operatorname{cot} x
 641\end{split}\end{equation}
 642
 643\subsubsection*{Pythagorean identities}
 644
 645\begin{equation}\begin{split}
 646  1 + \operatorname{cot}^2 x & = \operatorname{cosec}^2 x, \quad \text{where } \sin x \ne 0 \\
 647  1 + \tan^2 x & = \operatorname{sec}^2 x, \quad \text{where } \cos x \ne 0
 648\end{split}\end{equation}
 649
 650\subsection*{Compound angle formulas}
 651
 652\[\cos(x \pm y) = \cos x + \cos y \mp \sin x \sin y\]
 653\[\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y\]
 654\[\tan(x \pm y) = {{\tan x \pm \tan y} \over {1 \mp \tan x \tan y}}\]
 655
 656\subsection*{Double angle formulas}
 657
 658\begin{equation}\begin{split}
 659  \cos 2x &= \cos^2 x - \sin^2 x \\
 660  & = 1 - 2\sin^2 x \\
 661  & = 2 \cos^2 x -1
 662\end{split}\end{equation}
 663
 664\[\sin 2x = 2 \sin x \cos x\]
 665
 666\[\tan 2x = {{2 \tan x} \over {1 - \tan^2 x}}\]
 667
 668\subsection*{Inverse circular functions}
 669
 670Inverse functions: \(f(f^{-1}(x)) = x, \quad f(f^{-1}(x)) = x\)\\
 671Must be 1:1 to find inverse (reflection in \(y=x\)
 672
 673Domain is restricted to make functions 1:1.
 674
 675\subsubsection*{\(\arcsin\)}
 676
 677\[\sin^{-1}: [-1, 1] \rightarrow \mathbb{R}, \quad \sin^{-1} x = y, \quad \text{where } \sin y = x \text{ and } y \in [{-\pi \over 2}, {\pi \over 2}]\]
 678
 679\subsubsection*{\(\arccos\)}
 680
 681\[\cos^{-1} \rightarrow \mathbb{R}, \quad \cos^{-1} x = y, \quad \text{where } \cos y = x \text{ and } y \in [0, \pi]\]
 682
 683\subsubsection*{\(\arctan\)}
 684
 685\[\tan^{-1}: \mathbb{R} \rightarrow \mathbb{R}, \quad \tan^{-1} x = y, \quad \text{where } \tan y = x \text{ and } y \in \left(-{\pi \over 2}, {\pi \over 2}\right)\]
 686
 687
 688\section{Differential calculus}
 689
 690\subsection*{Limits}
 691
 692\[\lim_{x \rightarrow a}f(x)\]
 693
 694\(L^-\) - limit from below
 695
 696\(L^+\) - limit from above
 697
 698\(\lim_{x \to a} f(x)\) - limit of a point
 699
 700\begin{itemize}
 701\item
 702  Limit exists if \(L^-=L^+\)
 703\item
 704  If limit exists, point does not.
 705\item
 706  For solving \(x\rightarrow\infty\), factorise so that all \(x\) terms are in denominators\\
 707    e.g. \[\lim_{x \rightarrow \infty}{{2x+3} \over {x-2}}={{2+{3 \over x}} \over {1-{2 \over x}}}={2 \over 1} = 2\]
 708    \item
 709Limits can be solved using normal techniques (if div 0, factorise)
 710\end{itemize}
 711
 712
 713\begin{enumerate}
 714\item
 715  For constant function \(f(x)=k\), \(\lim_{x \rightarrow a} f(x) = k\)
 716\item
 717  \(\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G\)
 718\item
 719  \(\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G\)
 720    \item
 721\(\therefore \lim_{x \rightarrow a} c \times f(x)=cF\) where \(c=\) constant
 722\ite
 723  \({\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0\)
 724\item
 725A function is continuous if \(L^-=L^+=f(x)\) for all values of \(x\).
 726\end{enumerate}
 727
 728\subsection{Gradients of secants and tangents}
 729
 730\textbf{Secant (chord)} - line joining two points on curve\\
 731\textbf{Tangent} - line that intersects curve at one point
 732
 733\(m\left(\overrightharp{PQ}\right){m_{PQ}}={\operatorname{rise} \over \operatorname{run}} = {\delta y \over \delta x} \text{ for } P(x,y),\quad Q(x+\delta x, y+ \delta y)\)
 734
 735As \(Q \rightarrow P, \delta x \rightarrow 0\). Chord becomes tangent
 736(two infinitesimal points are equal).
 737
 738\subsection{First principles derivative}
 739
 740\[f^\prime(x) = \lim_{\delta x \rightarrow 0}{\delta y \over \delta x}={\frac{dy}{dx}}\]
 741
 742\subsubsection*{Logarithmic identities}
 743
 744\(\log_b (xy)=\log_b x + \log_b y\)\\
 745\(\log_b x^n = n \log_b x\)\\
 746\(\log_b y^{x^n} = x^n \log_b y\)
 747
 748\subsubsection*{Index identities}}
 749
 750\(b^{m+n}=b^m \cdot b^n\)\\
 751\((b^m)^n=b^{m \cdot n}\)\\
 752\((b \cdot c)^n = b^n \cdot c^n\)\\
 753\({a^m \div a^n} = {a^{m-n}}\)
 754
 755\subsubsection{\texorpdfstring{\(e\) as a
 756logarithm}{e as a logarithm}}\label{e-as-a-logarithm}
 757
 758\[\operatorname{if} y=e^x, \quad \operatorname{then} x=\log_e y\]
 759\[\ln x = \log_e x\]
 760
 761\subsection*{Derivative rules}
 762
 763\begin{longtable}[]{@{}ll@{}}
 764\toprule
 765\(f(x)\) & \(f^\prime(x)\)\tabularnewline
 766\midrule
 767\endhead
 768\(\sin x\) & \(\cos x\)\tabularnewline
 769\(\sin ax\) & \(a\cos ax\)\tabularnewline
 770\(\cos x\) & \(-\sin x\)\tabularnewline
 771\(\cos ax\) & \(-a \sin ax\)\tabularnewline
 772\(\tan f(x)\) & \(f^2(x) \sec^2f(x)\)\tabularnewline
 773\(e^x\) & \(e^x\)\tabularnewline
 774\(e^{ax}\) & \(ae^{ax}\)\tabularnewline
 775\(ax^{nx}\) & \(an \cdot e^{nx}\)\tabularnewline
 776\(\log_e x\) & \(1 \over x\)\tabularnewline
 777\(\log_e {ax}\) & \(1 \over x\)\tabularnewline
 778\(\log_e f(x)\) & \(f^\prime (x) \over f(x)\)\tabularnewline
 779\(\sin(f(x))\) & \(f^\prime(x) \cdot \cos(f(x))\)\tabularnewline
 780\(\sin^{-1} x\) & \(1 \over {\sqrt{1-x^2}}\)\tabularnewline
 781\(\cos^{-1} x\) & \(-1 \over {sqrt{1-x^2}}\)\tabularnewline
 782\(\tan^{-1} x\) & \(1 \over {1 + x^2}\)\tabularnewline
 783\bottomrule
 784\end{longtable}
 785
 786\subsection*{Reciprocal derivatives}
 787
 788\[\frac{1}{\frac{dy}{dx}} = \frac{dx}{dy}\]
 789
 790\subsection*{Differentiating \(x=f(y)\)}
 791
 792Find \(\frac{dx}{dy}\). Then:
 793
 794\begin{align*}
 795  {\frac{dx}{dy}} =& {1 \over {\frac{dy}{dx}}} \\
 796  \implies {\frac{dy}{dx}} &= {1 \over {\frac{dx}{dy}}}\).
 797
 798\[{\frac{dy}{dx}} = {1 \over {\frac{dx}{dy}}}\]
 799
 800\subsection*{Second derivative}}
 801
 802\[f(x) \longrightarrow f^\prime (x) \longrightarrow f^{\prime\prime}(x)\]
 803
 804\[\therefore y \longrightarrow {\frac{dy}{dx}} \longrightarrow {d({\frac{dy}{dx}}) \over dx} \longrightarrow {d^2 y \over dx^2}\]
 805
 806Order of polynomial \(n\)th derivative decrements each time the
 807derivative is taken
 808
 809\subsubsection*{Points of Inflection}
 810
 811\emph{Stationary point} - point of zero gradient (i.e.
 812\(f^\prime(x)=0\))\\
 813\emph{Point of inflection} - point of maximum \(|\)gradient\(|\) (i.e.
 814\(f^{\prime\prime} = 0\))
 815
 816\begin{itemize}
 817\tightlist
 818\item
 819  if \(f^\prime (a) = 0\) and \(f^{\prime\prime}(a) > 0\), then point
 820  \((a, f(a))\) is a local min (curve is concave up)
 821\item
 822  if \(f^\prime (a) = 0\) and \(f^{\prime\prime} (a) < 0\), then point
 823  \((a, f(a))\) is local max (curve is concave down)
 824\item
 825  if \(f^{\prime\prime}(a) = 0\), then point \((a, f(a))\) is a point of
 826  inflection
 827\item
 828  if also \(f^\prime(a)=0\), then it is a stationary point of inflection
 829\end{itemize}
 830
 831\begin{figure}
 832\centering
 833\includegraphics{graphics/second-derivatives.png}
 834\caption{}
 835\end{figure}
 836
 837\subsection*{Implicit Differentiation}
 838
 839\textbf{On CAS:} Action \(\rightarrow\) Calculation \(\rightarrow\)
 840\texttt{impDiff(y\^{}2+ax=5,\ x,\ y)}. Returns \(y^\prime= \dots\).
 841
 842Used for differentiating circles etc.
 843
 844If \(p\) and \(q\) are expressions in \(x\) and \(y\) such that \(p=q\),
 845for all \(x\) nd \(y\), then:
 846
 847\[{\frac{dp}{dx}} = {\frac{dq}{dx}} \quad \text{and} \quad {\frac{dp}{dy}} = {\frac{dq}{dy}}\]
 848
 849\subsection*{Integration}
 850
 851\[\int f(x) \cdot dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)\]
 852
 853\[\int x^n \cdot dx = {x^{n+1} \over n+1} + c\]
 854
 855\begin{itemize}
 856\tightlist
 857\item
 858  area enclosed by curves
 859\item
 860  \(+c\) should be shown on each step without \(\int\)
 861\end{itemize}
 862
 863\subsubsection*{Integral laws}
 864
 865\(\int f(x) + g(x) dx = \int f(x) dx + \int g(x) dx\)\\
 866\(\int k f(x) dx = k \int f(x) dx\)
 867
 868\begin{longtable}[]{@{}ll@{}}
 869\toprule
 870\begin{minipage}[b]{0.42\columnwidth}\raggedright\strut
 871\(f(x)\)\strut
 872\end{minipage} & \begin{minipage}[b]{0.38\columnwidth}\raggedright\strut
 873\(\int f(x) \cdot dx\)\strut
 874\end{minipage}\tabularnewline
 875\midrule
 876\endhead
 877\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
 878\(k\) (constant)\strut
 879\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
 880\(kx + c\)\strut
 881\end{minipage}\tabularnewline
 882\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
 883\(x^n\)\strut
 884\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
 885\({x^{n+1} \over {n+1}} + c\)\strut
 886\end{minipage}\tabularnewline
 887\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
 888\(a x^{-n}\)\strut
 889\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
 890\(a \cdot \log_e x + c\)\strut
 891\end{minipage}\tabularnewline
 892\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
 893\({1 \over {ax+b}}\)\strut
 894\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
 895\({1 \over a} \log_e (ax+b) + c\)\strut
 896\end{minipage}\tabularnewline
 897\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
 898\((ax+b)^n\)\strut
 899\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
 900\({1 \over {a(n+1)}}(ax+b)^{n-1} + c\)\strut
 901\end{minipage}\tabularnewline
 902\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
 903\(e^{kx}\)\strut
 904\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
 905\({1 \over k} e^{kx} + c\)\strut
 906\end{minipage}\tabularnewline
 907\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
 908\(e^k\)\strut
 909\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
 910\(e^kx + c\)\strut
 911\end{minipage}\tabularnewline
 912\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
 913\(\sin kx\)\strut
 914\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
 915\(-{1 \over k} \cos (kx) + c\)\strut
 916\end{minipage}\tabularnewline
 917\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
 918\(\cos kx\)\strut
 919\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
 920\({1 \over k} \sin (kx) + c\)\strut
 921\end{minipage}\tabularnewline
 922\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
 923\(\sec^2 kx\)\strut
 924\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
 925\({1 \over k} \tan(kx) + c\)\strut
 926\end{minipage}\tabularnewline
 927\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
 928\(1 \over \sqrt{a^2-x^2}\)\strut
 929\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
 930\(\sin^{-1} {x \over a} + c \>\vert\> a>0\)\strut
 931\end{minipage}\tabularnewline
 932\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
 933\(-1 \over \sqrt{a^2-x^2}\)\strut
 934\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
 935\(\cos^{-1} {x \over a} + c \>\vert\> a>0\)\strut
 936\end{minipage}\tabularnewline
 937\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
 938\(a \over {a^2-x^2}\)\strut
 939\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
 940\(\tan^{-1} {x \over a} + c\)\strut
 941\end{minipage}\tabularnewline
 942\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
 943\({f^\prime (x)} \over {f(x)}\)\strut
 944\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
 945\(\log_e f(x) + c\)\strut
 946\end{minipage}\tabularnewline
 947\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
 948\(g^\prime(x)\cdot f^\prime(g(x)\)\strut
 949\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
 950\(f(g(x))\) (chain rule)\strut
 951\end{minipage}\tabularnewline
 952\begin{minipage}[t]{0.42\columnwidth}\raggedright\strut
 953\(f(x) \cdot g(x)\)\strut
 954\end{minipage} & \begin{minipage}[t]{0.38\columnwidth}\raggedright\strut
 955\(\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx\)\strut
 956\end{minipage}\tabularnewline
 957\bottomrule
 958\end{longtable}
 959
 960Note \(\sin^{-1} {x \over a} + \cos^{-1} {x \over a}\) is constant for
 961all \(x \in (-a, a)\).
 962
 963\subsubsection*{Definite integrals}}
 964
 965\[\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)\]
 966
 967\begin{itemize}
 968\tightlist
 969\item
 970  Signed area enclosed by:
 971  \(\> y=f(x), \quad y=0, \quad x=a, \quad x=b\).
 972\item
 973  \emph{Integrand} is \(f\).
 974\item
 975  \(F(x)\) may be any integral, i.e. \(c\) is inconsequential
 976\end{itemize}
 977
 978\paragraph{Properties}\label{properties}
 979
 980\[\int^b_a f(x) \> dx = \int^c_a f(x) \> dx + \int^b_c f(x) \> dx\]
 981
 982\[\int^a_a f(x) \> dx = 0\]
 983
 984\[\int^b_a k \cdot f(x) \> dx = k \int^b_a f(x) \> dx\]
 985
 986\[\int^b_a f(x) \pm g(x) \> dx = \int^b_a f(x) \> dx \pm \int^b_a g(x) \> dx\]
 987
 988\[\int^b_a f(x) \> dx = - \int^a_b f(x) \> dx\]
 989
 990\subsubsection{Integration by substitution}
 991
 992\[\int f(u) {\frac{du}{dx}} \cdot dx = \int f(u) \cdot du\]
 993
 994Note \(f(u)\) must be one-to-one \(\implies\) one \(x\) value for each
 995\(y\) value
 996
 997e.g.~for \(y=\int(2x+1)\sqrt{x+4} \cdot dx\):\\
 998let \(u=x+4\)\\
 999\(\implies {\frac{du}{dx}} = 1\)\\
1000\(\implies x = u - 4\)\\
1001then \(y=\int (2(u-4)+1)u^{1 \over 2} \cdot du\)\\
1002Solve as a normal integral
1003
1004\subsubsection*{Definite integrals by substitution}
1005
1006For \(\int^b_a f(x) {\frac{du}{dx}} \cdot dx\), evaluate new \(a\) and
1007\(b\) for \(f(u) \cdot du\).
1008
1009\subsubsection{Trigonometric integration}
1010
1011\[\sin^m x \cos^n x \cdot dx\]
1012
1013\textbf{\(m\) is odd:}\\
1014\(m=2k+1\) where \(k \in \mathbb{Z}\)\\
1015\(\implies \sin^{2k+1} x = (\sin^2 z)^k \sin x = (1 - \cos^2 x)^k \sin x\)\\
1016Substitute \(u=\cos x\)
1017
1018\textbf{\(n\) is odd:}\\
1019\(n=2k+1\) where \(k \in \mathbb{Z}\)\\
1020\(\implies \cos^{2k+1} x = (\cos^2 x)^k \cos x = (1-\sin^2 x)^k \cos x\)\\
1021Subbstitute \(u=\sin x\)
1022
1023\textbf{\(m\) and \(n\) are even:}\\
1024Use identities:
1025
1026\begin{itemize}
1027\tightlist
1028\item
1029  \(\sin^2x={1 \over 2}(1-\cos 2x)\)
1030\item
1031  \(\cos^2x={1 \over 2}(1+\cos 2x)\)
1032\item
1033  \(\sin 2x = 2 \sin x \cos x\)
1034\end{itemize}
1035
1036\subsection*{Partial fractions}
1037
1038On CAS: Action \(\rightarrow\) Transformation \(\rightarrow\)
1039\texttt{expand/combine}\\
1040or Interactive \(\rightarrow\) Transformation \(\rightarrow\)
1041\texttt{expand} \(\rightarrow\) Partial
1042
1043\subsection*{Graphing integrals on CAS}
1044
1045In main: Interactive \(\rightarrow\) Calculation \(\rightarrow\)
1046\(\int\) (\(\rightarrow\) Definite)\\
1047Restrictions: \texttt{Define\ f(x)=...} \(\rightarrow\)
1048\texttt{f(x)\textbar{}x\textgreater{}1} (e.g.)
1049
1050\subsection{Applications of antidifferentiation}
1051
1052\begin{itemize}
1053\tightlist
1054\item
1055  \(x\)-intercepts of \(y=f(x)\) identify \(x\)-coordinates of
1056  stationary points on \(y=F(x)\)
1057\item
1058  nature of stationary points is determined by sign of \(y=f(x)\) on
1059  either side of its \(x\)-intercepts
1060\item
1061  if \(f(x)\) is a polynomial of degree \(n\), then \(F(x)\) has degree
1062  \(n+1\)
1063\end{itemize}
1064
1065To find stationary points of a function, substitute \(x\) value of given
1066point into derivative. Solve for \({\frac{dy}{dx}}=0\). Integrate to find
1067original function.
1068
1069\subsection*{Solids of revolution}}
1070
1071Approximate as sum of infinitesimally-thick cylinders
1072
1073\subsubsection{Rotation about \(x\)-axis}
1074
1075\begin{align*}
1076  V &= \int^{x=b}_{x-a} \pi y^2 \> dx \\
1077    &= \pi \int^b_a (f(x))^2 \> dx
1078\end{align*}
1079
1080\subsubsection{Rotation about \(y\)-axis}
1081
1082\begin{align*}
1083  V &= \int^{y=b}_{y=a} \pi x^2 \> dy \\
1084    &= \pi \int^b_a (f(y))^2 \> dy
1085\end{align*}
1086
1087\subsubsection{Regions not bound by\(y=0\)}
1088
1089\[V = \pi \int^b_a f(x)^2 - g(x)^2 \> dx\]\\
1090where \(f(x) > g(x)\)
1091
1092\subsection*{Length of a curve}
1093
1094\[L = \int^b_a \sqrt{1 + ({\frac{dy}{dx}})^2} \> dx \quad \text{(Cartesian)}\]
1095
1096\[L = \int^b_a \sqrt{{\frac{dx}{dt}} + ({\frac{dy}{dt}})^2} \> dt \quad \text{(parametric)}\]
1097
1098Evaluate on CAS. Or use Interactive \(\rightarrow\) Calculation
1099\(\rightarrow\) Line \(\rightarrow\) \texttt{arcLen}.
1100
1101\subsection*{Rates}
1102
1103\subsubsection*{Related rates}
1104
1105\[{\frac{da}{db}} \quad \text{(change in } a \text{ with respect to } b)\]
1106
1107\subsubsection{Gradient at a point on parametric curve}
1108
1109\[{\frac{dy}{dx}} = {{\frac{dy}{dt}} \div {\frac{dx}{dt}}} \> \vert \> {\frac{dx}{dt}} \ne 0\]
1110
1111\[\frac{d^2}{dx^2} = \frac{d(y^\prime)}{dx} = {\frac{dy^\prime}{dt} \div {\frac{dx}{dt}}} \> \vert \> y^\prime = {\frac{dy}{dx}}\]
1112
1113\subsection*{Rational functions}
1114
1115\[f(x) = \frac{P(x)}{Q(x)} \quad \text{where } P, Q \text{ are polynomial functions}\]
1116
1117\subsubsection*{Addition of ordinates}
1118
1119\begin{itemize}
1120\tightlist
1121\item
1122  when two graphs have the same ordinate, \(y\)-coordinate is double the
1123  ordinate
1124\item
1125  when two graphs have opposite ordinates, \(y\)-coordinate is 0 i.e.
1126  (\(x\)-intercept)
1127\item
1128  when one of the ordinates is 0, the resulting ordinate is equal to the
1129  other ordinate
1130\end{itemize}
1131
1132\subsection{Fundamental theorem of calculus}
1133
1134If \(f\) is continuous on \([a, b]\), then
1135
1136\[\int^b_a f(x) \> dx = F(b) - F(a)\]
1137
1138where \(F\) is any antiderivative of \(f\)
1139
1140\subsection*{Differential equations}}
1141
1142One or more derivatives
1143
1144\textbf{Order} - highest power inside derivative\\
1145\textbf{Degree} - highest power of highest derivative\\
1146e.g. \({\left(\frac{dy^2}{d^2} x\right)}^3\): order 2, degree 3
1147
1148\subsubsection*{Verifying solutions}
1149
1150Start with \(y=\dots\), and differentiate. Substitute into original
1151equation.
1152
1153\subsubsection{Function of the dependent
1154variable}\label{function-of-the-dependent-variable}
1155
1156If \({\frac{dy}{dx}}=g(y)\), then
1157\(\frac{{dx}{dy} = 1 \div {\frac{dy}{dx}} = \frac{1}{g(y)}\). Integrate
1158both sides to solve equation. Only add \(c\) on one side. Express
1159\(e^c\) as \(A\).
1160
1161\subsubsection*{Mixing problems}
1162
1163\[\left(\frac{dm}{dt}\right)_\Sigma = \left(\frac{dm}{dt}\right)_{\text{in}} - \left({\frac{dm}{dt}\)_{\text{out}}\]
1164
1165\subsubsection*{Separation of variables}
1166
1167If \({\frac{dy}{dx}}=f(x)g(y)\), then:
1168
1169\[\int f(x) \> dx = \int \frac{1}{g(y)} \> dy\]
1170
1171\subsubsection{Using definite integrals to solve DEs}
1172
1173Used for situations where solutions to \({\frac{dy}{dx}} = f(x)\) is not
1174required.
1175
1176In some cases, it may not be possible to obtain an exact solution.
1177
1178Approximate solutions can be found by numerically evaluating a definite
1179integral.
1180
1181\subsubsection{Using Euler's method to solve a differential equation}
1182
1183\[\frac{f(x+h) - f(x)}{h} \approx f^\prime (x) \quad \text{for small } h\]
1184
1185\[\implies f(x+h) \approx f(x) + hf^\prime(x)\]
1186
1187  \end{multicols}
1188\end{document}