1---
2geometry: a4paper, margin=2cm
3columns: 2
4author: Andrew Lorimer
5header-includes:
6- \usepackage{fancyhdr}
7- \usepackage{setspace}
8- \pagestyle{fancy}
9- \fancyhead[LO,LE]{Year 12 Methods}
10- \fancyhead[CO,CE]{Andrew Lorimer}
11- \usepackage{graphicx}
12- \usepackage{tabularx}
13- \usepackage[dvipsnames]{xcolor}
14---
15
16\pagenumbering{gobble}
17\setstretch{1.5}
18\definecolor{cas}{HTML}{e6f0fe}
19
20# Exponentials & Logarithms
21
22## Index laws
23
24\begin{equation*}\begin{split}
25 a^m \times a^n & = a^{m+n} \\
26 a^m \div a^n & = a^{m-n} \\
27 (a^m)^n & = a^{_mn} \\
28 (ab)^m & = a^m b^m \\
29 {({a \over b})}^m & = {a^m \over b^m} \\
30 ^n\sqrt{x} &=x^{1/n}
31\end{split}\end{equation*}
32
33## Logarithm laws
34
35\begin{equation*}\begin{split}
36 \log_a(mn) & = \log_am + \log_an \\
37 \log_a({m \over n}) & = \log_am - \log_a \\
38 \log_a(m^p) & = p\log_am \\
39 \log_a(m^{-1}) & = -\log_am \\
40 \log_a1 = 0 & \text{ and } \log_aa = 1 \\
41 \log_b c &= {{\log_a c} \over {\log_a b}}
42\end{split}\end{equation*}
43
44## Inverse functions
45
46For $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=a^x$, inverse is:
47
48$$f^{-1}: \mathbb{R}^+ \rightarrow \mathbb{R}, f^{-1}=\log_ax$$
49
50## Exponentials
51
52$$e^x \quad \text{natural exponential function}$$
53
54$$e= \lim_{n \rightarrow \infty} (1 + {1 \over n})^n$$
55
56## Modelling
57
58$$A = A_0 e^{kt}$$
59
60- $A_0$ is initial value
61- $t$ is time taken
62- $k$ is a constant
63- For continuous growth, $k > 0$
64- For continuous decay, $k < 0$
65
66\columnbreak
67
68## Graphing exponential functions
69
70$$f(x)=Aa^{k(x-b)} + c, \quad \vert \> a > 1$$
71
72- **$y$-intercept** at $(0, A \cdot a^{-kb}+c)$ as $x \rightarrow \infty$
73- **horizontal asymptote** at $y=c$
74- **domain** is $\mathbb{R}$
75- **range** is $(c, \infty)$
76- dilation of factor $|A|$ from $x$-axis
77- dilation of factor $1 \over k$ from $y$-axis
78
79![](graphics/exponential-graphs.png){#id .class width=30%}
80
81## Graphing logarithmic functions
82
83$\log_e x$ is the inverse of $e^x$ (reflection across $y=x$)
84
85$$f(x)=A \log_a k(x-b) + c$$
86
87where
88
89- **domain** is $(b, \infty)$
90- **range** is $\mathbb{R}$
91- **vertical asymptote** at $x=b$
92- $y$-intercept exists if $b<0$
93- dilation of factor $|A|$ from $x$-axis
94- dilation of factor $1 \over k$ from $y$-axis
95
96![](graphics/log-graphs.png){#id .class width=30%}
97
98## Finding equations
99
100\colorbox{cas}{On CAS:} ![](graphics/cas-simultaneous.png){#id .class width=75px}