spec / spec-collated.texon commit [spec] minor editors; add inverse sin&cos graphs (f6326f1)
   1\documentclass[a4paper]{article}
   2\usepackage[a4paper,margin=2cm]{geometry}
   3\usepackage{multicol}
   4\usepackage{multirow}
   5\usepackage{amsmath}
   6\usepackage{amssymb}
   7\usepackage{harpoon}
   8\usepackage{tabularx}
   9\usepackage[dvipsnames, table]{xcolor}
  10\usepackage{blindtext}
  11\usepackage{graphicx}
  12\usepackage{wrapfig}
  13\usepackage{tikz}
  14\usepackage{tikz-3dplot}
  15\usepackage{pgfplots}
  16\usetikzlibrary{calc}
  17\usetikzlibrary{angles}
  18\usetikzlibrary{datavisualization.formats.functions}
  19\usetikzlibrary{decorations.markings}
  20\usepgflibrary{arrows.meta}
  21\usepackage{fancyhdr}
  22\pagestyle{fancy}
  23\fancyhead[LO,LE]{Year 12 Specialist}
  24\fancyhead[CO,CE]{Andrew Lorimer}
  25
  26\usepackage{mathtools}
  27\usepackage{xcolor} % used only to show the phantomed stuff
  28\renewcommand\hphantom[1]{{\color[gray]{.6}#1}} % comment out!
  29\setlength\fboxsep{0pt} \setlength\fboxrule{.2pt} % for the \fboxes
  30\newcommand*\leftlap[3][\,]{#1\hphantom{#2}\mathllap{#3}}
  31\newcommand*\rightlap[2]{\mathrlap{#2}\hphantom{#1}}
  32\newcolumntype{L}[1]{>{\hsize=#1\hsize\raggedright\arraybackslash}X}%
  33\newcolumntype{R}[1]{>{\hsize=#1\hsize\raggedleft\arraybackslash}X}%
  34\definecolor{cas}{HTML}{e6f0fe}
  35\linespread{1.5}
  36\newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);}
  37
  38\begin{document}
  39
  40\begin{multicols}{2}
  41
  42  \section{Complex numbers}
  43
  44  \[\mathbb{C}=\{a+bi:a,b\in\mathbb{R}\}\]
  45
  46  \begin{align*}
  47    \text{Cartesian form: } & a+bi\\
  48    \text{Polar form: } & r\operatorname{cis}\theta
  49  \end{align*}
  50
  51  \subsection*{Operations}
  52
  53  \definecolor{shade1}{HTML}{ffffff}
  54  \definecolor{shade2}{HTML}{e6f2ff}
  55  \definecolor{shade3}{HTML}{cce2ff}
  56  \begin{tabularx}{\columnwidth}{r|X|X}
  57    & \textbf{Cartesian} & \textbf{Polar} \\
  58    \hline
  59    \(z_1 \pm z_2\) & \((a \pm c)(b \pm d)i\) & convert to \(a+bi\)\\
  60    \hline
  61    \(+k \times z\) & \multirow{2}{*}{\(ka \pm kbi\)} & \(kr\operatorname{cis} \theta\)\\
  62    \cline{1-1}\cline{3-3}
  63    \(-k \times z\) & & \(kr \operatorname{cis}(\theta\pm \pi)\)\\
  64    \hline
  65    \(z_1 \cdot z_2\) & \(ac-bd+(ad+bc)i\) & \(r_1r_2 \operatorname{cis}(\theta_1 + \theta_2)\)\\
  66    \hline
  67    \(z_1 \div z_2\) & \((z_1 \overline{z_2}) \div |z_2|^2\) & \(\left(\frac{r_1}{r_2}\right) \operatorname{cis}(\theta_1 - \theta_2)\)
  68  \end{tabularx}
  69
  70  \subsubsection*{Scalar multiplication in polar form}
  71
  72  For \(k \in \mathbb{R}^+\):
  73  \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\theta\]
  74
  75  \noindent For \(k \in \mathbb{R}^-\):
  76  \[k\left(r \operatorname{cis}\theta\right)=kr \operatorname{cis}\left(\begin{cases}\theta - \pi & |0<\operatorname{Arg}(z)\le \pi \\ \theta + \pi & |-\pi<\operatorname{Arg}(z)\le 0\end{cases}\right)\]
  77
  78    \subsection*{Conjugate}
  79
  80    \begin{align*}
  81      \overline{z} &= a \mp bi\\
  82      &= r \operatorname{cis}(-\theta)
  83    \end{align*}
  84
  85    \noindent \colorbox{cas}{On CAS: \texttt{conjg(a+bi)}}
  86
  87    \subsubsection*{Properties}
  88
  89    \begin{align*}
  90      \overline{z_1 \pm z_2} &= \overline{z_1}\pm\overline{z_2}\\
  91      \overline{z_1 \cdot z_2} &= \overline{z_1}\cdot\overline{z_2}\\
  92      \overline{kz} &= k\overline{z} \quad | \quad k \in \mathbb{R}\\
  93      z\overline{z} &= (a+bi)(a-bi)\\
  94      &= a^2 + b^2\\
  95      &= |z|^2
  96    \end{align*}
  97
  98    \subsection*{Modulus}
  99
 100    \[|z|=|\vec{Oz}|=\sqrt{a^2 + b^2}\]
 101
 102    \subsubsection*{Properties}
 103
 104    \begin{align*}
 105      |z_1z_2|&=|z_1||z_2|\\
 106      \left|\frac{z_1}{z_2}\right|&=\frac{|z_1|}{|z_2|}\\
 107      |z_1+z_2|&\le|z_1|+|z_2|
 108    \end{align*}
 109
 110    \subsection*{Multiplicative inverse}
 111
 112    \begin{align*}
 113      z^{-1}&=\frac{a-bi}{a^2+b^2}\\
 114      &=\frac{\overline{z}}{|z|^2}a\\
 115      &=r \operatorname{cis}(-\theta)
 116    \end{align*}
 117
 118    \subsection*{Dividing over \(\mathbb{C}\)}
 119
 120    \begin{align*}
 121      \frac{z_1}{z_2}&=z_1z_2^{-1}\\
 122      &=\frac{z_1\overline{z_2}}{|z_2|^2}\\
 123      &=\frac{(a+bi)(c-di)}{c^2+d^2}\\
 124      & \qquad \text{(rationalise denominator)}
 125    \end{align*}
 126
 127    \subsection*{Polar form}
 128
 129    \begin{align*}
 130      z&=r\operatorname{cis}\theta\\
 131      &=r(\cos \theta + i \sin \theta)
 132    \end{align*}
 133
 134    \begin{itemize}
 135      \item{\(r=|z|=\sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}\)}
 136      \item{\(\theta = \operatorname{arg}(z)\) \quad \colorbox{cas}{On CAS: \texttt{arg(a+bi)}}}
 137      \item{\(\operatorname{Arg}(z) \in (-\pi,\pi)\) \quad \bf{(principal argument)}}
 138      \item{\colorbox{cas}{Convert on CAS:}\\ \verb|compToTrig(a+bi)| \(\iff\) \verb|cExpand{r·cisX}|}
 139      \item{Multiple representations:\\\(r\operatorname{cis}\theta=r\operatorname{cis}(\theta+2n\pi)\) with \(n \in \mathbb{Z}\) revolutions}
 140      \item{\(\operatorname{cis}\pi=-1,\qquad \operatorname{cis}0=1\)}
 141    \end{itemize}
 142
 143    \subsection*{de Moivres' theorem}
 144
 145    \[(r \operatorname{cis} \theta)^n = r^n \operatorname{cis}(n\theta) \text{ where } n \in \mathbb{Z}\]
 146
 147    \subsection*{Complex polynomials}
 148
 149    Include \(\pm\) for all solutions, incl. imaginary
 150
 151    \begin{tabularx}{\columnwidth}{ R{0.55} X  }
 152      \hline
 153      Sum of squares & \(\begin{aligned} 
 154        z^2 + a^2 &= z^2-(ai)^2\\
 155      &= (z+ai)(z-ai) \end{aligned}\) \\
 156      \hline
 157      Sum of cubes & \(a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)\)\\
 158      \hline
 159      Division & \(P(z)=D(z)Q(z)+R(z)\) \\
 160      \hline
 161      Remainder theorem & Let \(\alpha \in \mathbb{C}\). Remainder of \(P(z) \div (z-\alpha)\) is \(P(\alpha)\)\\
 162      \hline
 163      Factor theorem & \(z-\alpha\) is a factor of \(P(z) \iff P(\alpha)=0\) for \(\alpha \in \mathbb{C}\)\\
 164      \hline
 165      Conjugate root theorem & \(P(z)=0 \text{ at } z=a\pm bi\) (\(\implies\) both \(z_1\) and \(\overline{z_1}\) are solutions)\\
 166      \hline
 167    \end{tabularx}
 168
 169    \subsection*{\(n\)th roots}
 170
 171    \(n\)th roots of \(z=r\operatorname{cis}\theta\) are:
 172
 173    \[z = r^{\frac{1}{n}} \operatorname{cis}\left(\frac{\theta+2k\pi}{n}\right)\]
 174
 175    \begin{itemize}
 176
 177      \item{Same modulus for all solutions}
 178      \item{Arguments separated by \(\frac{2\pi}{n} \therefore\) there are \(n\) roots}
 179      \item{If one square root is \(a+bi\), the other is \(-a-bi\)}
 180      \item{Give one implicit \(n\)th root \(z_1\), function is \(z=z_1^n\)}
 181      \item{Solutions of \(z^n=a\) where \(a \in \mathbb{C}\) lie on the circle \(x^2+y^2=\left(|a|^{\frac{1}{n}}\right)^2\) \quad (intervals of \(\frac{2\pi}{n}\))}
 182    \end{itemize}
 183
 184    \noindent For \(0=az^2+bz+c\), use quadratic formula:
 185
 186    \[z=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\]
 187
 188    \subsection*{Fundamental theorem of algebra}
 189
 190    A polynomial of degree \(n\) can be factorised into \(n\) linear factors in \(\mathbb{C}\):
 191
 192    \[\implies P(z)=a_n(z-\alpha_1)(z-\alpha_2)(z-\alpha_3)\dots(z-\alpha_n)\]
 193    \[\text{ where } \alpha_1,\alpha_2,\alpha_3,\dots,\alpha_n \in \mathbb{C}\]
 194
 195    \subsection*{Argand planes}
 196
 197    \begin{center}\begin{tikzpicture}[scale=2]
 198      \draw [->] (-0.2,0) -- (1.5,0) node [right]  {$\operatorname{Re}(z)$};
 199      \draw [->] (0,-0.2) -- (0,1.5) node [above] {$\operatorname{Im}(z)$};
 200      \coordinate (P) at (1,1);
 201      \coordinate (a) at (1,0);
 202      \coordinate (b) at (0,1);
 203      \coordinate (O) at (0,0);
 204      \draw (0,0) -- (P) node[pos=0.5, above left]{\(r\)} node[pos=1, right]{\(\begin{aligned}z&=a+bi\\&=r\operatorname{cis}\theta\end{aligned}\)};
 205        \draw [gray, dashed] (1,1) -- (1,0) node[black, pos=1, below]{\(a\)};
 206        \draw [gray, dashed] (1,1) -- (0,1) node[black, pos=1, left]{\(b\)};
 207        \begin{scope}
 208          \path[clip] (O) -- (P) -- (a);
 209          \fill[red, opacity=0.5, draw=black] (O) circle (2mm);
 210          \node at ($(O)+(20:3mm)$) {$\theta$};
 211        \end{scope}
 212        \filldraw (P) circle (0.5pt);
 213    \end{tikzpicture}\end{center}
 214
 215    \begin{itemize}
 216      \item{Multiplication by \(i \implies\) CCW rotation of \(\frac{\pi}{2}\)}
 217      \item{Addition: \(z_1 + z_2 \equiv\) \overrightharp{\(Oz_1\)} + \overrightharp{\(Oz_2\)}}
 218    \end{itemize}
 219
 220    \subsection*{Sketching complex graphs}
 221
 222    \subsubsection*{Linear}
 223
 224    \begin{itemize}
 225      \item{\(\operatorname{Re}(z)=c\) or \(\operatorname{Im}(z)=c\) (perpendicular bisector)}
 226      \item{\(\operatorname{Im}(z)=m\operatorname{Re}(z)\)}
 227      \item{\(|z+a|=|z+b| \implies 2(a-b)x=b^2-a^2\)\\Geometric: equidistant from \(a,b\)}
 228    \end{itemize}
 229
 230    \subsubsection*{Circles}
 231
 232    \begin{itemize}
 233      \item \(|z-z_1|^2=c^2|z_2+2|^2\)
 234      \item \(|z-(a+bi)|=c \implies (x-a)^2+_(y-b)^2=c^2\)
 235    \end{itemize}
 236
 237    \noindent \textbf{Loci} \qquad \(\operatorname{Arg}(z)<\theta\)
 238
 239    \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}]
 240      \draw [->] (0,0) -- (1,0) node [right]  {$\operatorname{Re}(z)$};
 241      \draw [->] (0,-0.5) -- (0,1) node [above] {$\operatorname{Im}(z)$};
 242      \draw [<-, dashed, thick, blue] (-1,0) -- (0,0);
 243      \draw [->, thick, blue] (0,0) -- (1,1);
 244      \fill [gray, opacity=0.2, domain=-1:1, variable=\x] (-1,-0.5) -- (-1,0) -- (0, 0) -- (1,1) -- (1,-0.5) -- cycle;
 245      \begin{scope}
 246        \path[clip] (0,0) -- (1,1) -- (1,0);
 247        \fill[red, opacity=0.5, draw=black] (0,0) circle (2mm);
 248        \node at ($(0,0)+(20:3mm)$) {$\frac{\pi}{4}$};
 249      \end{scope}
 250      \node [font=\footnotesize] at (0.5,-0.25) {\(\operatorname{Arg}(z)\le\frac{\pi}{4}\)};
 251      \node [blue, mydot] {};
 252    \end{tikzpicture}\end{center}
 253
 254    \noindent \textbf{Rays} \qquad \(\operatorname{Arg}(z-b)=\theta\)
 255
 256    \begin{center}\begin{tikzpicture}[scale=2,mydot/.style={circle, fill=white, draw, outer sep=0pt, inner sep=1.5pt}]
 257      \draw [->] (-0.75,0) -- (1.5,0) node [right]  {$\operatorname{Re}(z)$};
 258      \draw [->] (0,-1) -- (0,1) node [above] {$\operatorname{Im}(z)$};
 259      \draw [->, thick, brown] (-0.25,0) -- (-0.75,-1);
 260      \node [above, font=\footnotesize] at (-0.25,0) {\(\frac{1}{4}\)};
 261      \begin{scope}
 262        \path[clip] (-0.25,0) -- (-0.75,-1) -- (0,0);
 263        \fill[orange, opacity=0.5, draw=black] (-0.25,0) circle (2mm);
 264      \end{scope}
 265      \node at (-0.08,-0.3) {\(\frac{\pi}{8}\)};
 266      \node [font=\footnotesize, left] at (-0.75,-1) {\(\operatorname{Arg}(z+\frac{1}{4})=\frac{\pi}{8}\)};
 267      \node [brown, mydot] at (-0.25,0) {};
 268      \draw [<->, thick, green] (0,-1) -- (1.5,0.5) node [pos=0.25, black, font=\footnotesize, right] {\(|z-2|=|z-(1+i)|\)};
 269      \node [left, font=\footnotesize] at (0,-1) {\(-1\)};
 270      \node [below, font=\footnotesize] at (1,0) {\(1\)};
 271    \end{tikzpicture}\end{center}
 272
 273    \section{Vectors}
 274    \begin{center}\begin{tikzpicture}
 275      \draw [->] (-0.5,0) -- (3,0) node [right]  {\(x\)};
 276      \draw [->] (0,-0.5) -- (0,3) node [above] {\(y\)};
 277      \draw [orange, ->, thick] (0.5,0.5) -- (2.5,2.5) node [pos=0.5, above] {\(\vec{u}\)};
 278      \begin{scope}[very thick, every node/.style={sloped,allow upside down}]
 279        \draw [gray, dashed, thick] (0.5,0.5) -- (2.5,0.5) node [pos=0.5] {\midarrow} node[black, pos=0.5, below]{\(x\vec{i}\)};
 280        \draw [gray, dashed, thick] (2.5,0.5) -- (2.5,2.5) node [pos=0.5] {\midarrow};
 281      \end{scope}
 282      \node[black, right] at (2.5,1.5) {\(y\vec{j}\)};
 283    \end{tikzpicture}\end{center}
 284    \subsection*{Column notation}
 285
 286    \[\begin{bmatrix}x\\ y \end{bmatrix} \iff x\boldsymbol{i} + y\boldsymbol{j}\]
 287      \(\begin{bmatrix}x_2-x_1\\ y_2-y_1 \end{bmatrix}\) \quad between \(A(x_1,y_1), \> B(x_2,y_2)\)
 288
 289        \subsection*{Scalar multiplication}
 290
 291        \[k\cdot (x\boldsymbol{i}+y\boldsymbol{j})=kx\boldsymbol{i}+ky\boldsymbol{j}\]
 292
 293        \noindent For \(k \in \mathbb{R}^-\), direction is reversed
 294
 295        \subsection*{Vector addition}
 296        \begin{center}\begin{tikzpicture}[scale=1]
 297          \coordinate (A) at (0,0);
 298          \coordinate (B) at (2,2);
 299          \draw [->, thick, red] (0,0) -- (2,2) node [pos=0.5, below right] {\(\vec{u}=2\vec{i}+2\vec{j}\)};
 300          \draw [->, thick, blue] (2,2) -- (1,4) node [pos=0.5, above right] {\(\vec{v}=-\vec{i}+2\vec{j}\)};
 301          \draw [->, thick, orange] (0,0) -- (1,4) node [pos=0.5, left] {\(\vec{u}+\vec{v}=\vec{i}+4\vec{j}\)};
 302        \end{tikzpicture}\end{center}
 303
 304        \[(x\boldsymbol{i}+y\boldsymbol{j}) \pm (a\boldsymbol{i}+b\boldsymbol{j})=(x \pm a)\boldsymbol{i}+(y \pm b)\boldsymbol{j}\]
 305
 306        \begin{itemize}
 307          \item Draw each vector head to tail then join lines
 308          \item Addition is commutative (parallelogram)
 309          \item \(\boldsymbol{u}-\boldsymbol{v}=\boldsymbol{u}+(-\boldsymbol{v}) \implies \overrightharp{AB}=\boldsymbol{b}-\boldsymbol{a}\)
 310        \end{itemize}
 311
 312        \subsection*{Magnitude}
 313
 314        \[|(x\boldsymbol{i} + y\boldsymbol{j})|=\sqrt{x^2+y^2}\]
 315
 316        \subsection*{Parallel vectors}
 317
 318        \[\boldsymbol{u} || \boldsymbol{v} \iff \boldsymbol{u} = k \boldsymbol{v} \text{ where } k \in \mathbb{R} \setminus \{0\}\]
 319
 320        For parallel vectors \(\boldsymbol{a}\) and \(\boldsymbol{b}\):\\
 321        \[\boldsymbol{a \cdot b}=\begin{cases}
 322          |\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction}\\
 323          -|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions}
 324        \end{cases}\]
 325        %\includegraphics[width=0.2,height=\textheight]{graphics/parallelogram-vectors.jpg}
 326        %\includegraphics[width=1]{graphics/vector-subtraction.jpg}
 327
 328        \subsection*{Perpendicular vectors}
 329
 330        \[\boldsymbol{a} \perp \boldsymbol{b} \iff \boldsymbol{a} \cdot \boldsymbol{b} = 0\ \quad \text{(since \(\cos 90 = 0\))}\]
 331
 332        \subsection*{Unit vector \(|\hat{\boldsymbol{a}}|=1\)}
 333        \[\begin{split}\hat{\boldsymbol{a}} & = {\frac{1}{|\boldsymbol{a}|}}\boldsymbol{a} \\ & = \boldsymbol{a} \cdot {|\boldsymbol{a}|}\end{split}\]
 334
 335          \subsection*{Scalar product \(\boldsymbol{a} \cdot \boldsymbol{b}\)}
 336
 337
 338          \begin{center}\begin{tikzpicture}[scale=2]
 339            \draw [->] (0,0) -- (1,0.5) node [pos=0.5, above left] {\(\boldsymbol{b}\)};
 340            \draw [->] (0,0) -- (1,0) node [pos=0.5, below] {\(\boldsymbol{a}\)};
 341            \begin{scope}
 342              \path[clip] (1,0.5) -- (1,0) -- (0,0);
 343              \fill[orange, opacity=0.5, draw=black] (0,0) circle (2mm);
 344              \node at ($(0,0)+(15:4mm)$) {\(\theta\)};
 345            \end{scope}
 346          \end{tikzpicture}\end{center}
 347          \begin{align*}\boldsymbol{a} \cdot \boldsymbol{b} &= a_1 b_1 + a_2 b_2 \\  &= |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta \\ &\quad (\> 0 \le \theta \le \pi) \text{ - from cosine rule}\end{align*}
 348            \noindent\colorbox{cas}{On CAS: \texttt{dotP({[}a\ b\ c{]},\ {[}d\ e\ f{]})}}
 349
 350            \subsubsection*{Properties}
 351
 352            \begin{enumerate}
 353              \item
 354                \(k(\boldsymbol{a\cdot b})=(k\boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a}\cdot (k\boldsymbol{b})\)
 355              \item
 356                \(\boldsymbol{a \cdot 0}=0\)
 357              \item
 358                \(\boldsymbol{a} \cdot (\boldsymbol{b} + \boldsymbol{c})=\boldsymbol{a} \cdot \boldsymbol{b} + \boldsymbol{a} \cdot \boldsymbol{c}\)
 359              \item
 360                \(\boldsymbol{i \cdot i} = \boldsymbol{j \cdot j} = \boldsymbol{k \cdot k}= 1\)
 361              \item
 362                \(\boldsymbol{a} \cdot \boldsymbol{b} = 0 \quad \implies \quad \boldsymbol{a} \perp \boldsymbol{b}\)
 363              \item
 364                \(\boldsymbol{a \cdot a} = |\boldsymbol{a}|^2 = a^2\)
 365            \end{enumerate}
 366
 367            \subsection*{Angle between vectors}
 368
 369            \[\cos \theta = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a}| |\boldsymbol{b}|} = \frac{a_1 b_1 + a_2 b_2}{|\boldsymbol{a}| |\boldsymbol{b}|}\]
 370
 371            \noindent \colorbox{cas}{On CAS:} \texttt{angle([a b c], [a b c])}
 372
 373            (Action \(\rightarrow\) Vector \(\rightarrow\)Angle)
 374
 375            \subsection*{Angle between vector and axis}
 376
 377            \noindent For\(\boldsymbol{a} = a_1 \boldsymbol{i} + a_2 \boldsymbol{j} + a_3 \boldsymbol{k}\)
 378            which makes angles \(\alpha, \beta, \gamma\) with positive side of
 379            \(x, y, z\) axes:
 380            \[\cos \alpha = \frac{a_1}{|\boldsymbol{a}|}, \quad \cos \beta = \frac{a_2}{|\boldsymbol{a}|}, \quad \cos \gamma = \frac{a_3}{|\boldsymbol{a}|}\]
 381
 382            \noindent \colorbox{cas}{On CAS:} \texttt{angle({[}a\ b\ c{]},\ {[}1\ 0\ 0{]})}\\for angle
 383            between \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) and
 384            \(x\)-axis
 385
 386            \subsection*{Projections \& resolutes}
 387
 388            \begin{tikzpicture}[scale=3]
 389              \draw [->, purple] (0,0) -- (1,0.5) node [pos=0.5, above left] {\(\boldsymbol{a}\)};
 390              \draw [->, orange] (0,0) -- (1,0) node [pos=0.5, below] {\(\boldsymbol{u}\)};
 391              \draw [->, blue] (1,0) -- (2,0) node [pos=0.5, below] {\(\boldsymbol{b}\)};
 392              \begin{scope}
 393                \path[clip] (1,0.5) -- (1,0) -- (0,0);
 394                \fill[orange, opacity=0.5, draw=black] (0,0) circle (2mm);
 395                \node at ($(0,0)+(15:4mm)$) {\(\theta\)};
 396              \end{scope}
 397              \begin{scope}[very thick, every node/.style={sloped,allow upside down}]
 398                \draw [gray, dashed, thick] (1,0) -- (1,0.5) node [pos=0.5] {\midarrow} node[black, pos=0.5, right, rotate=-90]{\(\boldsymbol{w}\)};
 399              \end{scope}
 400              \draw (0,0) coordinate (O)
 401              (1,0) coordinate (A)
 402              (1,0.5) coordinate (B)
 403              pic [draw,red,angle radius=2mm] {right angle = O--A--B};
 404            \end{tikzpicture}
 405
 406            \subsubsection*{\(\parallel\boldsymbol{b}\) (vector projection/resolute)}
 407
 408            \begin{align*}
 409              \boldsymbol{u} & = \frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|^2}\boldsymbol{b} \\
 410              & = \left(\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|}\right)\left(\frac{\boldsymbol{b}}{|\boldsymbol{b}|}\right) \\
 411              & = (\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}
 412            \end{align*}
 413
 414            \subsubsection*{\(\perp\boldsymbol{b}\) (perpendicular projection)}
 415            \[\boldsymbol{w} = \boldsymbol{a} - \boldsymbol{u}\]
 416
 417            \subsubsection*{\(|\boldsymbol{u}|\) (scalar projection/resolute)}
 418            \begin{align*}
 419              s &= |\boldsymbol{u}|\\
 420              &= \boldsymbol{a} \cdot \hat{\boldsymbol{b}}\\
 421              &=\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{|\boldsymbol{b}|}\\
 422              &= |\boldsymbol{a}| \cos \theta
 423            \end{align*}
 424
 425            \subsubsection*{Rectangular (\(\parallel,\perp\)) components}
 426
 427            \[\boldsymbol{a}=\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\boldsymbol{b}\cdot\boldsymbol{b}}\boldsymbol{b}+\left(\boldsymbol{a}-\frac{\boldsymbol{a}\cdot\boldsymbol{b}}{\boldsymbol{b}\cdot\boldsymbol{b}}\boldsymbol{b}\right)\]
 428
 429
 430            \subsection*{Vector proofs}
 431
 432            \textbf{Concurrent:} intersection of \(\ge\) 3 lines
 433
 434            \begin{tikzpicture}
 435              \draw [blue] (0,0) -- (1,1);
 436              \draw [red] (1,0) -- (0,1);
 437              \draw [brown] (0.4,0) -- (0.6,1);
 438              \filldraw (0.5,0.5) circle (2pt);
 439            \end{tikzpicture}
 440
 441            \subsubsection*{Collinear points}
 442
 443            \(\ge\) 3 points lie on the same line
 444
 445            \begin{tikzpicture}
 446              \draw [purple] (0,0) -- (4,1);
 447              \filldraw (2,0.5) circle (2pt) node [above] {\(C\)};
 448              \filldraw (1,0.25) circle (2pt) node [above] {\(A\)};
 449              \filldraw (3,0.75) circle (2pt) node [above] {\(B\)};
 450              \coordinate (O) at (2.8,-0.2);
 451              \node at (O) [below] {\(O\)}; 
 452              \begin{scope}[->, orange, thick] 
 453                \draw (O) -- (2,0.5) node [pos=0.5, above, font=\footnotesize, black] {\(\boldsymbol{c}\)};
 454                \draw (O) -- (1,0.25) node [pos=0.5, below, font=\footnotesize, black] {\(\boldsymbol{a}\)};
 455                \draw (O) -- (3,0.75) node [pos=0.5, right, font=\footnotesize, black] {\(\boldsymbol{b}\)};
 456              \end{scope}
 457            \end{tikzpicture}
 458
 459            \begin{align*}
 460              \text{e.g. Prove that}\\
 461              \overrightharp{AC}=m\overrightharp{AB} \iff \boldsymbol{c}&=(1-m)\boldsymbol{a}+m\boldsymbol{b}\\
 462              \implies \boldsymbol{c} &= \overrightharp{OA} + \overrightharp{AC}\\
 463              &= \overrightharp{OA} + m\overrightharp{AB}\\
 464              &=\boldsymbol{a}+m(\boldsymbol{b}-\boldsymbol{a})\\
 465              &=\boldsymbol{a}+m\boldsymbol{b}-m\boldsymbol{a}\\
 466              &=(1-m)\boldsymbol{a}+m{b}
 467            \end{align*}
 468            \begin{align*}
 469              \text{Also, } \implies \overrightharp{OC} &= \lambda \vec{OA} + \mu \overrightharp{OB} \\
 470              \text{where } \lambda + \mu &= 1\\
 471              \text{If } C \text{ lies along } \overrightharp{AB}, & \implies 0 < \mu < 1
 472            \end{align*}
 473
 474
 475            \subsubsection*{Parallelograms}
 476
 477            \begin{center}\begin{tikzpicture}
 478              \coordinate (O) at (0,0) node [below left] {\(O\)};
 479              \coordinate (A) at (4,0);
 480              \coordinate (B) at (6,2);
 481              \coordinate (C) at (2,2);
 482              \coordinate (D) at (6,0);
 483
 484              \draw[postaction={decorate}, decoration={markings, mark=at position 0.6 with {\arrow{>>}}}] (O)--(A) node [below left] {\(A\)};
 485              \draw[postaction={decorate}, decoration={markings,mark=at position 0.5 with {\arrow{>}}}] (A)--(B) node [above right] {\(B\)};
 486              \draw[postaction={decorate}, decoration={markings, mark=at position 0.6 with {\arrow{>>}}}] (B)--(C) node [above left] {\(C\)};
 487              \draw[postaction={decorate}, decoration={markings,mark=at position 0.5 with {\arrow{>}}}] (C)--(O);
 488
 489              \draw [gray, dashed] (O) -- (B) node [pos=0.75] {\(\diagdown\diagdown\)} node [pos=0.25] {\(\diagdown\diagdown\)};
 490              \draw [gray, dashed] (A) -- (C) node [pos=0.75] {\(\diagup\)} node [pos=0.25] {\(\diagup\)};
 491              \begin{scope}
 492                \path[clip] (C) -- (A) -- (O);
 493                \fill[orange, opacity=0.5, draw=black] (0,0) circle (4mm);
 494                \node at ($(0,0)+(20:8mm)$) {\(\theta\)};
 495              \end{scope}
 496              \draw [gray, thick, dotted] (B) -- (D) node [pos=0.5, right, black, font=\footnotesize] {\(|\boldsymbol{c}|\sin\theta\)} (A) -- (D) node [pos=0.5, below, black, font=\footnotesize] {\(|\boldsymbol{c}|\cos\theta\)};
 497              \draw pic [draw,thick,red,angle radius=2mm] {right angle=O--D--B};
 498            \end{tikzpicture}\end{center}
 499
 500            \begin{itemize}
 501              \item
 502                Diagonals \(\overrightharp{OB}, \overrightharp{AC}\) bisect each other
 503              \item
 504                If diagonals are equal length, it is a rectangle
 505              \item
 506                \(|\overrightharp{OB}|^2 + |\overrightharp{CA}|^2 = |\overrightharp{OA}|^2 + |\overrightharp{AB}|^2 + |\overrightharp{CB}|^2 + |\overrightharp{OC}|^2\)
 507              \item
 508                Area \(=\boldsymbol{c} \cdot \boldsymbol{a}\)
 509            \end{itemize}
 510
 511            \subsubsection*{Useful vector properties}
 512
 513            \begin{itemize}
 514              \item
 515                \(\boldsymbol{a} \parallel \boldsymbol{b} \implies \boldsymbol{b}=k\boldsymbol{a}\) for some
 516                \(k \in \mathbb{R} \setminus \{0\}\)
 517              \item
 518                If \(\boldsymbol{a}\) and \(\boldsymbol{b}\) are parallel with at
 519                least one point in common, then they lie on the same straight line
 520              \item
 521                \(\boldsymbol{a} \perp \boldsymbol{b} \iff \boldsymbol{a} \cdot \boldsymbol{b}=0\)
 522              \item
 523                \(\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2\)
 524            \end{itemize}
 525
 526            \subsection*{Linear dependence}
 527
 528            \(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\) are linearly dependent if they are \(\nparallel\) and:
 529            \begin{align*}
 530              0&=k\boldsymbol{a}+l\boldsymbol{b}+m\boldsymbol{c}\\
 531              \therefore \boldsymbol{c} &= m\boldsymbol{a} + n\boldsymbol{b} \quad \text{(simultaneous)}
 532            \end{align*}
 533
 534            \noindent \(\boldsymbol{a}, \boldsymbol{b},\) and \(\boldsymbol{c}\) are linearly
 535            independent if no vector in the set is expressible as a linear
 536            combination of other vectors in set, or if they are parallel.
 537
 538            \subsection*{Three-dimensional vectors}
 539
 540            Right-hand rule for axes: \(z\) is up or out of page.
 541
 542            \tdplotsetmaincoords{60}{120} 
 543            \begin{center}\begin{tikzpicture} [scale=3, tdplot_main_coords, axis/.style={->,thick}, 
 544              vector/.style={-stealth,red,very thick}, 
 545              vector guide/.style={dashed,gray,thick}]
 546
 547              %standard tikz coordinate definition using x, y, z coords
 548              \coordinate (O) at (0,0,0);
 549
 550              %tikz-3dplot coordinate definition using x, y, z coords
 551
 552              \pgfmathsetmacro{\ax}{1}
 553              \pgfmathsetmacro{\ay}{1}
 554              \pgfmathsetmacro{\az}{1}
 555
 556              \coordinate (P) at (\ax,\ay,\az);
 557
 558              %draw axes
 559              \draw[axis] (0,0,0) -- (1,0,0) node[anchor=north east]{$x$};
 560              \draw[axis] (0,0,0) -- (0,1,0) node[anchor=north west]{$y$};
 561              \draw[axis] (0,0,0) -- (0,0,1) node[anchor=south]{$z$};
 562
 563              %draw a vector from O to P
 564              \draw[vector] (O) -- (P);
 565
 566              %draw guide lines to components
 567              \draw[vector guide]         (O) -- (\ax,\ay,0);
 568              \draw[vector guide] (\ax,\ay,0) -- (P);
 569              \draw[vector guide]         (P) -- (0,0,\az);
 570              \draw[vector guide] (\ax,\ay,0) -- (0,\ay,0);
 571              \draw[vector guide] (\ax,\ay,0) -- (0,\ay,0);
 572              \draw[vector guide] (\ax,\ay,0) -- (\ax,0,0);
 573              \node[tdplot_main_coords,above right]
 574              at (\ax,\ay,\az){(\ax, \ay, \az)};
 575            \end{tikzpicture}\end{center}
 576
 577            \subsection*{Parametric vectors}
 578
 579            Parametric equation of line through point \((x_0, y_0, z_0)\) and
 580            parallel to \(a\boldsymbol{i} + b\boldsymbol{j} + c\boldsymbol{k}\) is:
 581
 582            \[\begin{cases}x = x_o + a \cdot t \\ y = y_0 + b \cdot t \\ z = z_0 + c \cdot t\end{cases}\]
 583
 584              \section{Circular functions}
 585
 586              \(\sin(bx)\) or \(\cos(bx)\): period \(=\frac{2\pi}{b}\)
 587
 588              \noindent \(\tan(nx)\): period \(=\frac{\pi}{n}\)\\
 589              \indent\indent\indent asymptotes at \(x=\frac{(2k+1)\pi}{2n} \> \vert \> k \in \mathbb{Z}\)
 590
 591              \subsection*{Reciprocal functions}
 592
 593              \subsubsection*{Cosecant}
 594
 595              \[\operatorname{cosec} \theta = \frac{1}{\sin \theta} \> \vert \> \sin \theta \ne 0\]
 596
 597              \begin{itemize}
 598                \item
 599                  \textbf{Domain} \(= \mathbb{R} \setminus {n\pi : n \in \mathbb{Z}}\)
 600                \item
 601                  \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\)
 602                \item
 603                  \textbf{Turning points} at
 604                  \(\theta = \frac{(2n + 1)\pi}{2} \> \vert \> n \in \mathbb{Z}\)
 605                \item
 606                  \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
 607              \end{itemize}
 608
 609              \subsubsection*{Secant}
 610           \begin{center}\includegraphics[width=0.7\columnwidth]{graphics/sec.png}\end{center}
 611
 612                \[\operatorname{sec} \theta = \frac{1}{\cos \theta} \> \vert \> \cos \theta \ne 0\]
 613
 614                \begin{itemize}
 615
 616                  \item
 617                    \textbf{Domain}
 618                    \(= \mathbb{R} \setminus \frac{(2n + 1) \pi}{2} : n \in \mathbb{Z}\}\)
 619                  \item
 620                    \textbf{Range} \(= \mathbb{R} \setminus (-1, 1)\)
 621                  \item
 622                    \textbf{Turning points} at
 623                    \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
 624                  \item
 625                    \textbf{Asymptotes} at
 626                    \(\theta = \frac{(2n + 1) \pi}{2} \> \vert \> n \in \mathbb{Z}\)
 627                \end{itemize}
 628
 629                \subsubsection*{Cotangent}
 630
 631                \begin{center}\includegraphics[width=0.7\columnwidth]{graphics/cot.png}\end{center}
 632
 633                  \[\operatorname{cot} \theta = {{\cos \theta} \over {\sin \theta}} \> \vert \> \sin \theta \ne 0\]
 634
 635                  \begin{itemize}
 636
 637                    \item
 638                      \textbf{Domain} \(= \mathbb{R} \setminus \{n \pi: n \in \mathbb{Z}\}\)
 639                    \item
 640                      \textbf{Range} \(= \mathbb{R}\)
 641                    \item
 642                      \textbf{Asymptotes} at \(\theta = n\pi \> \vert \> n \in \mathbb{Z}\)
 643                  \end{itemize}
 644
 645                  \subsubsection*{Symmetry properties}
 646
 647                  \[\begin{split}
 648                    \operatorname{sec} (\pi \pm x) & = -\operatorname{sec} x \\
 649                    \operatorname{sec} (-x) & = \operatorname{sec} x \\
 650                    \operatorname{cosec} (\pi \pm x) & = \mp \operatorname{cosec} x \\
 651                    \operatorname{cosec} (-x) & = - \operatorname{cosec} x \\
 652                    \operatorname{cot} (\pi \pm x) & = \pm \operatorname{cot} x \\
 653                    \operatorname{cot} (-x) & = - \operatorname{cot} x
 654                  \end{split}\]
 655
 656                  \subsubsection*{Complementary properties}
 657
 658                  \[\begin{split}
 659                    \operatorname{sec} \left({\pi \over 2} - x\right) & = \operatorname{cosec} x \\
 660                    \operatorname{cosec} \left({\pi \over 2} - x\right) & = \operatorname{sec} x \\
 661                    \operatorname{cot} \left({\pi \over 2} - x\right) & = \tan x \\
 662                    \tan \left({\pi \over 2} - x\right) & = \operatorname{cot} x
 663                  \end{split}\]
 664
 665                  \subsubsection*{Pythagorean identities}
 666
 667                  \[\begin{split}
 668                    1 + \operatorname{cot}^2 x & = \operatorname{cosec}^2 x, \quad \text{where } \sin x \ne 0 \\
 669                    1 + \tan^2 x & = \operatorname{sec}^2 x, \quad \text{where } \cos x \ne 0
 670                  \end{split}\]
 671
 672                  \subsection*{Compound angle formulas}
 673
 674                  \[\cos(x \pm y) = \cos x + \cos y \mp \sin x \sin y\]
 675                  \[\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y\]
 676                  \[\tan(x \pm y) = {{\tan x \pm \tan y} \over {1 \mp \tan x \tan y}}\]
 677
 678                  \subsection*{Double angle formulas}
 679
 680                  \[\begin{split}
 681                    \cos 2x &= \cos^2 x - \sin^2 x \\
 682                    & = 1 - 2\sin^2 x \\
 683                    & = 2 \cos^2 x -1
 684                  \end{split}\]
 685
 686                  \[\sin 2x = 2 \sin x \cos x\]
 687
 688                  \[\tan 2x = {{2 \tan x} \over {1 - \tan^2 x}}\]
 689
 690                  \subsection*{Inverse circular functions}
 691
 692                  \pgfplotsset{every axis/.append style={
 693                    axis x line=middle,    % put the x axis in the middle
 694                    axis y line=middle,    % put the y axis in the middle
 695                    axis line style={<->}, % arrows on the axis
 696                    xlabel={$x$},          % default put x on x-axis
 697                    ylabel={$y$},          % default put y on y-axis
 698                    }}
 699
 700% arrows as stealth fighters
 701\tikzset{>=stealth}
 702
 703\begin{tikzpicture}
 704  \begin{axis}[domain = -1:1, samples = 500]
 705    \addplot[color = red]  {rad(asin(x))} node [pos=0.25, below right] {\(\sin^{-1}x\)};
 706    \addplot[color = blue] {rad(acos(x))} node [pos=0.25, below left] {\(\cos^{-1}x\)};
 707  \end{axis}
 708\end{tikzpicture}
 709
 710                  Inverse functions: \(f(f^{-1}(x)) = x\) (restrict domain)
 711
 712                  \[\sin^{-1}: [-1, 1] \rightarrow \mathbb{R}, \quad \sin^{-1} x = y\]
 713                  \hfill where \(\sin y = x, \> y \in [{-\pi \over 2}, {\pi \over 2}]\)
 714
 715                  \[\cos^{-1}: [-1,1] \rightarrow \mathbb{R}, \quad \cos^{-1} x = y\]
 716                  \hfill where \(\cos y = x, \> y \in [0, \pi]\)
 717
 718                  \[\tan^{-1}: \mathbb{R} \rightarrow \mathbb{R}, \quad \tan^{-1} x = y\]
 719                  \hfill where \(\tan y = x, \> y \in \left(-{\pi \over 2}, {\pi \over 2}\right)\)
 720
 721
 722                  \section{Differential calculus}
 723
 724                  \subsection*{Limits}
 725
 726                  \[\lim_{x \rightarrow a}f(x)\]
 727                  \(L^-,\quad L^+\) \qquad limit from below/above\\
 728                  \(\lim_{x \to a} f(x)\) \quad limit of a point\\
 729
 730                  \noindent For solving \(x\rightarrow\infty\), put all \(x\) terms in denominators\\
 731                  e.g. \[\lim_{x \rightarrow \infty}{{2x+3} \over {x-2}}={{2+{3 \over x}} \over {1-{2 \over x}}}={2 \over 1} = 2\]
 732
 733                  \subsubsection*{Limit theorems}
 734
 735                  \begin{enumerate}
 736                    \item
 737                      For constant function \(f(x)=k\), \(\lim_{x \rightarrow a} f(x) = k\)
 738                    \item
 739                      \(\lim_{x \rightarrow a} (f(x) \pm g(x)) = F \pm G\)
 740                    \item
 741                      \(\lim_{x \rightarrow a} (f(x) \times g(x)) = F \times G\)
 742                    \item
 743                      \(\therefore \lim_{x \rightarrow a} c \times f(x)=cF\) where \(c=\) constant
 744                    \item
 745                      \({\lim_{x \rightarrow a} {f(x) \over g(x)}} = {F \over G}, G \ne 0\)
 746                    \item
 747                      \(f(x)\) is continuous \(\iff L^-=L^+=f(x) \> \forall x\)
 748                  \end{enumerate}
 749
 750                  \subsection*{Gradients of secants and tangents}
 751
 752                  \textbf{Secant (chord)} - line joining two points on curve\\
 753                  \textbf{Tangent} - line that intersects curve at one point
 754
 755                  \subsection*{First principles derivative}
 756
 757                  \[f^\prime(x) = \lim_{\delta x \rightarrow 0}{\delta y \over \delta x}={\frac{dy}{dx}}\]
 758
 759                  \subsubsection*{Logarithmic identities}
 760
 761                  \(\log_b (xy)=\log_b x + \log_b y\)\\
 762                  \(\log_b x^n = n \log_b x\)\\
 763                  \(\log_b y^{x^n} = x^n \log_b y\)
 764
 765                  \subsubsection*{Index identities}
 766
 767                  \(b^{m+n}=b^m \cdot b^n\)\\
 768                  \((b^m)^n=b^{m \cdot n}\)\\
 769                  \((b \cdot c)^n = b^n \cdot c^n\)\\
 770                  \({a^m \div a^n} = {a^{m-n}}\)
 771
 772                  \subsection*{Derivative rules}
 773
 774                  \renewcommand{\arraystretch}{1.4}
 775                  \begin{tabularx}{\columnwidth}{rX}
 776                    \hline
 777                    \(f(x)\) & \(f^\prime(x)\)\\
 778                    \hline
 779                    \(\sin x\) & \(\cos x\)\\
 780                    \(\sin ax\) & \(a\cos ax\)\\
 781                    \(\cos x\) & \(-\sin x\)\\
 782                    \(\cos ax\) & \(-a \sin ax\)\\
 783                    \(\tan f(x)\) & \(f^2(x) \sec^2f(x)\)\\
 784                    \(e^x\) & \(e^x\)\\
 785                    \(e^{ax}\) & \(ae^{ax}\)\\
 786                    \(ax^{nx}\) & \(an \cdot e^{nx}\)\\
 787                    \(\log_e x\) & \(\dfrac{1}{x}\)\\
 788                    \(\log_e {ax}\) & \(\dfrac{1}{x}\)\\
 789                    \(\log_e f(x)\) & \(\dfrac{f^\prime (x)}{f(x)}\)\\
 790                    \(\sin(f(x))\) & \(f^\prime(x) \cdot \cos(f(x))\)\\
 791                    \(\sin^{-1} x\) & \(\dfrac{1}{\sqrt{1-x^2}}\)\\
 792                    \(\cos^{-1} x\) & \(\dfrac{-1}{sqrt{1-x^2}}\)\\
 793                    \(\tan^{-1} x\) & \(\dfrac{1}{1 + x^2}\)\\
 794                    \(\frac{d}{dy}f(y)\) & \(\dfrac{1}{\frac{dx}{dy}}\) (reciprocal)\\
 795                    \(uv\) & \(u \frac{dv}{dx}+v\frac{du}{dx} (product rule)\)\\
 796                    \(\dfrac{u}{v}\) & \(\dfrac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}\) (quotient rule)\\
 797                    \(f(g(x))\) & \(f^\prime(g(x))\cdot g^\prime(x)\)\\
 798                    \hline
 799                  \end{tabularx}
 800
 801                  \subsection*{Reciprocal derivatives}
 802
 803                  \[\frac{1}{\frac{dy}{dx}} = \frac{dx}{dy}\]
 804
 805                  \subsection*{Differentiating \(x=f(y)\)}
 806                  \begin{align*}
 807                    \text{Find }& \frac{dx}{dy}\\
 808                    \text{Then, }\frac{dx}{dy} &= \frac{1}{\frac{dy}{dx}} \\
 809                    \implies {\frac{dy}{dx}} &= \frac{1}{\frac{dx}{dy}}\\
 810                    \therefore {\frac{dy}{dx}} &= \frac{1}{\frac{dx}{dy}}
 811                  \end{align*}
 812
 813                  \subsubsection*{Second derivative}
 814                  \begin{align*}f(x) \longrightarrow &f^\prime (x) \longrightarrow f^{\prime\prime}(x)\\
 815                  \implies y \longrightarrow &\frac{dy}{dx} \longrightarrow \frac{d^2 y}{dx^2}\end{align*}
 816
 817                  \noindent Order of polynomial \(n\)th derivative decrements each time the derivative is taken
 818
 819                  \subsubsection*{Points of Inflection}
 820
 821                  \emph{Stationary point} - i.e.
 822                  \(f^\prime(x)=0\)\\
 823                  \emph{Point of inflection} - max \(|\)gradient\(|\) (i.e.
 824                  \(f^{\prime\prime} = 0\))
 825                  %\begin{table*}[ht]
 826                  %\centering
 827                  %  \begin{tabularx}{\textwidth}{XXXX}
 828                  %\hline
 829                  %    \rowcolor{shade2}
 830                  %    & \(\dfrac{d^2 y}{dx^2} > 0\)  & \(\dfrac{d^2y}{dx^2}<0\) & \(\dfrac{d^2y}{dx^2}=0\) (inflection) \\
 831                  %\hline
 832                  %    \(\frac{dy}{dx}>0\) & \begin{tikzpicture} \draw[domain=1:2,smooth,variable=\x,blue] plot ({\x},{(1/10)*\x*\x*\x}) plot ({\x},{0.675*\x-0.677}); \end{tikzpicture} & cell 3\\
 833                  %cell 1 & cell 2 & cell 3\\
 834                  %\hline
 835                  %\end{tabularx}
 836                  %\end{table*}
 837
 838
 839\begin{itemize}
 840  \item
 841                      if \(f^\prime (a) = 0\) and \(f^{\prime\prime}(a) > 0\), then point
 842                      \((a, f(a))\) is a local min (curve is concave up)
 843                    \item
 844                      if \(f^\prime (a) = 0\) and \(f^{\prime\prime} (a) < 0\), then point
 845                      \((a, f(a))\) is local max (curve is concave down)
 846                    \item
 847                      if \(f^{\prime\prime}(a) = 0\), then point \((a, f(a))\) is a point of
 848                      inflection
 849                    \item
 850                      if also \(f^\prime(a)=0\), then it is a stationary point of inflection
 851                  \end{itemize}
 852
 853                  \subsection*{Implicit Differentiation}
 854
 855                  \noindent Used for differentiating circles etc.
 856
 857                  If \(p\) and \(q\) are expressions in \(x\) and \(y\) such that \(p=q\),
 858                  for all \(x\) and \(y\), then:
 859
 860                  \[{\frac{dp}{dx}} = {\frac{dq}{dx}} \quad \text{and} \quad {\frac{dp}{dy}} = {\frac{dq}{dy}}\]
 861
 862                  \noindent \colorbox{cas}{\textbf{On CAS:}}\\
 863                  Action \(\rightarrow\) Calculation \(\rightarrow\) \texttt{impDiff(y\^{}2+ax=5,\ x,\ y)}\\
 864                  Returns \(y^\prime= \dots\).
 865
 866                  \subsection*{Integration}
 867
 868                  \[\int f(x) \cdot dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)\]
 869
 870                  \subsection*{Integral laws}
 871
 872                  \renewcommand{\arraystretch}{1.4}
 873                  \begin{tabularx}{\columnwidth}{rX}
 874                    \hline
 875                    \(f(x)\) & \(\int f(x) \cdot dx\) \\
 876                    \hline
 877                    \(k\) (constant) & \(kx + c\)\\
 878                    \(x^n\) & \(\dfrac{1}{n+1} x^{n+1}\) \\
 879                    \(a x^{-n}\) &\(a \cdot \log_e |x| + c\)\\
 880                    \(\dfrac{1}{ax+b}\) &\(\dfrac{1}{a} \log_e (ax+b) + c\)\\
 881                    \((ax+b)^n\) & \(\dfrac{1}{a(n+1)}(ax+b)^{n-1} + c\>|\>n\ne 1\)\\
 882                    \((ax+b)^{-1}\) & \(\dfrac{1}{a}\log_e |ax+b|+c\)\\
 883                    \(e^{kx}\) & \(\dfrac{1}{k} e^{kx} + c\)\\
 884                    \(e^k\) & \(e^kx + c\)\\
 885                    \(\sin kx\) & \(\dfrac{-1}{k} \cos (kx) + c\)\\
 886                    \(\cos kx\) & \(\dfrac{1}{k} \sin (kx) + c\)\\
 887                    \(\sec^2 kx\) & \(\dfrac{1}{k} \tan(kx) + c\)\\
 888                    \(\dfrac{1}{\sqrt{a^2-x^2}}\) & \(\sin^{-1} \dfrac{x}{a} + c \>\vert\> a>0\)\\
 889                    \(\dfrac{-1}{\sqrt{a^2-x^2}}\) & \(\cos^{-1} \dfrac{x}{a} + c \>\vert\> a>0\)\\
 890                    \(\frac{a}{a^2-x^2}\) & \(\tan^{-1} \frac{x}{a} + c\)\\
 891                    \(\frac{f^\prime (x)}{f(x)}\) & \(\log_e f(x) + c\)\\
 892                    \(\int f(u) \cdot \frac{du}{dx} \cdot dx\) & \(\int f(u) \cdot du\) (substitution)\\
 893                    \(f(x) \cdot g(x)\) & \(\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx\)\\
 894                    \hline
 895                  \end{tabularx}
 896
 897                  Note \(\sin^{-1} {x \over a} + \cos^{-1} {x \over a}\) is constant \(\forall x \in (-a, a)\)
 898
 899                  \subsection*{Definite integrals}
 900
 901                  \[\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)\]
 902
 903                  \begin{itemize}
 904
 905                    \item
 906                      Signed area enclosed by\\
 907                      \(\> y=f(x), \quad y=0, \quad x=a, \quad x=b\).
 908                    \item
 909                      \emph{Integrand} is \(f\).
 910                  \end{itemize}
 911
 912                  \subsubsection*{Properties}
 913
 914                  \[\int^b_a f(x) \> dx = \int^c_a f(x) \> dx + \int^b_c f(x) \> dx\]
 915
 916                  \[\int^a_a f(x) \> dx = 0\]
 917
 918                  \[\int^b_a k \cdot f(x) \> dx = k \int^b_a f(x) \> dx\]
 919
 920                  \[\int^b_a f(x) \pm g(x) \> dx = \int^b_a f(x) \> dx \pm \int^b_a g(x) \> dx\]
 921
 922                  \[\int^b_a f(x) \> dx = - \int^a_b f(x) \> dx\]
 923
 924                  \subsection*{Integration by substitution}
 925
 926                  \[\int f(u) {\frac{du}{dx}} \cdot dx = \int f(u) \cdot du\]
 927
 928                  \noindent Note \(f(u)\) must be 1:1 \(\implies\) one \(x\) for each \(y\)
 929                  \begin{align*}\text{e.g. for } y&=\int(2x+1)\sqrt{x+4} \cdot dx\\
 930                    \text{let } u&=x+4\\
 931                    \implies& {\frac{du}{dx}} = 1\\
 932                    \implies& x = u - 4\\
 933                    \text{then } &y=\int (2(u-4)+1)u^{\frac{1}{2}} \cdot du\\
 934                    &\text{(solve as  normal integral)}
 935                  \end{align*}
 936
 937                  \subsubsection*{Definite integrals by substitution}
 938
 939                  For \(\int^b_a f(x) {\frac{du}{dx}} \cdot dx\), evaluate new \(a\) and
 940                  \(b\) for \(f(u) \cdot du\).
 941
 942                  \subsubsection*{Trigonometric integration}
 943
 944                  \[\sin^m x \cos^n x \cdot dx\]
 945
 946                  \paragraph{\textbf{\(m\) is odd:}}
 947                  \(m=2k+1\) where \(k \in \mathbb{Z}\)\\
 948                  \(\implies \sin^{2k+1} x = (\sin^2 z)^k \sin x = (1 - \cos^2 x)^k \sin x\)\\
 949                  Substitute \(u=\cos x\)
 950
 951                  \paragraph{\textbf{\(n\) is odd:}}
 952                  \(n=2k+1\) where \(k \in \mathbb{Z}\)\\
 953                  \(\implies \cos^{2k+1} x = (\cos^2 x)^k \cos x = (1-\sin^2 x)^k \cos x\)\\
 954                  Substitute \(u=\sin x\)
 955
 956                  \paragraph{\textbf{\(m\) and \(n\) are even:}}
 957                  use identities...
 958
 959                  \begin{itemize}
 960
 961                    \item
 962                      \(\sin^2x={1 \over 2}(1-\cos 2x)\)
 963                    \item
 964                      \(\cos^2x={1 \over 2}(1+\cos 2x)\)
 965                    \item
 966                      \(\sin 2x = 2 \sin x \cos x\)
 967                  \end{itemize}
 968
 969                  \subsection*{Partial fractions}
 970
 971                  \colorbox{cas}{On CAS:}\\
 972                  \indent Action \(\rightarrow\) Transformation \(\rightarrow\)
 973                  \texttt{expand/combine}\\
 974                  \indent Interactive \(\rightarrow\) Transformation \(\rightarrow\)
 975                  Expand \(\rightarrow\) Partial
 976
 977                  \subsection*{Graphing integrals on CAS}
 978
 979                  \colorbox{cas}{In main:} Interactive \(\rightarrow\) Calculation \(\rightarrow\)
 980                  \(\int\) (\(\rightarrow\) Definite)\\
 981                  Restrictions: \texttt{Define\ f(x)=..} then \texttt{f(x)\textbar{}x\textgreater{}..}
 982
 983                  \subsection*{Applications of antidifferentiation}
 984
 985                  \begin{itemize}
 986
 987                    \item
 988                      \(x\)-intercepts of \(y=f(x)\) identify \(x\)-coordinates of
 989                      stationary points on \(y=F(x)\)
 990                    \item
 991                      nature of stationary points is determined by sign of \(y=f(x)\) on
 992                      either side of its \(x\)-intercepts
 993                    \item
 994                      if \(f(x)\) is a polynomial of degree \(n\), then \(F(x)\) has degree
 995                      \(n+1\)
 996                  \end{itemize}
 997
 998                  To find stationary points of a function, substitute \(x\) value of given
 999                  point into derivative. Solve for \({\frac{dy}{dx}}=0\). Integrate to find
1000                  original function.
1001
1002                  \subsection*{Solids of revolution}
1003
1004                  Approximate as sum of infinitesimally-thick cylinders
1005
1006                  \subsubsection*{Rotation about \(x\)-axis}
1007
1008                  \begin{align*}
1009                    V &= \int^{x=b}_{x-a} \pi y^2 \> dx \\
1010                    &= \pi \int^b_a (f(x))^2 \> dx
1011                  \end{align*}
1012
1013                  \subsubsection*{Rotation about \(y\)-axis}
1014
1015                  \begin{align*}
1016                    V &= \int^{y=b}_{y=a} \pi x^2 \> dy \\
1017                    &= \pi \int^b_a (f(y))^2 \> dy
1018                  \end{align*}
1019
1020                  \subsubsection*{Regions not bound by \(y=0\)}
1021
1022                  \[V = \pi \int^b_a f(x)^2 - g(x)^2 \> dx\]
1023                  \hfill where \(f(x) > g(x)\)
1024
1025                  \subsection*{Length of a curve}
1026
1027                  \[L = \int^b_a \sqrt{1 + ({\frac{dy}{dx}})^2} \> dx \quad \text{(Cartesian)}\]
1028
1029                  \[L = \int^b_a \sqrt{{\frac{dx}{dt}} + ({\frac{dy}{dt}})^2} \> dt \quad \text{(parametric)}\]
1030
1031                  \noindent \colorbox{cas}{On CAS:}\\
1032                  \indent Evaluate formula,\\
1033                  \indent or Interactive \(\rightarrow\) Calculation
1034                  \(\rightarrow\) Line \(\rightarrow\) \texttt{arcLen}
1035
1036                  \subsection*{Rates}
1037
1038                  \subsubsection*{Gradient at a point on parametric curve}
1039
1040                  \[{\frac{dy}{dx}} = {{\frac{dy}{dt}} \div {\frac{dx}{dt}}} \> \vert \> {\frac{dx}{dt}} \ne 0\]
1041
1042                  \[\frac{d^2}{dx^2} = \frac{d(y^\prime)}{dx} = {\frac{dy^\prime}{dt} \div {\frac{dx}{dt}}} \> \vert \> y^\prime = {\frac{dy}{dx}}\]
1043
1044                  \subsection*{Rational functions}
1045
1046                  \[f(x) = \frac{P(x)}{Q(x)} \quad \text{where } P, Q \text{ are polynomial functions}\]
1047
1048                  \subsubsection*{Addition of ordinates}
1049
1050                  \begin{itemize}
1051
1052                    \item
1053                      when two graphs have the same ordinate, \(y\)-coordinate is double the
1054                      ordinate
1055                    \item
1056                      when two graphs have opposite ordinates, \(y\)-coordinate is 0 i.e.
1057                      (\(x\)-intercept)
1058                    \item
1059                      when one of the ordinates is 0, the resulting ordinate is equal to the
1060                      other ordinate
1061                  \end{itemize}
1062
1063                  \subsection*{Fundamental theorem of calculus}
1064
1065                  If \(f\) is continuous on \([a, b]\), then
1066
1067                  \[\int^b_a f(x) \> dx = F(b) - F(a)\]
1068                  \hfill where \(F = \int f \> dx\)
1069
1070                  \subsection*{Differential equations}
1071
1072                  \noindent\textbf{Order} - highest power inside derivative\\
1073                  \textbf{Degree} - highest power of highest derivative\\
1074                  e.g. \({\left(\dfrac{dy^2}{d^2} x\right)}^3\) \qquad order 2, degree 3
1075
1076                  \subsubsection*{Verifying solutions}
1077
1078                  Start with \(y=\dots\), and differentiate. Substitute into original
1079                  equation.
1080
1081                  \subsubsection*{Function of the dependent
1082                  variable}
1083
1084                  If \({\frac{dy}{dx}}=g(y)\), then
1085                  \(\frac{dx}{dy} = 1 \div \frac{dy}{dx} = \frac{1}{g(y)}\). Integrate both sides to solve equation. Only add \(c\) on one side. Express
1086                  \(e^c\) as \(A\).
1087
1088                  \begin{table*}[ht]
1089                    \centering
1090                    \includegraphics[width=0.7\textwidth]{graphics/second-derivatives.png}
1091                  \end{table*}
1092
1093                  \subsubsection*{Mixing problems}
1094
1095                  \[\left(\frac{dm}{dt}\right)_\Sigma = \left(\frac{dm}{dt}\right)_{\text{in}} - \left(\frac{dm}{dt}_{\text{out}}\right)\]
1096
1097                  \subsubsection*{Separation of variables}
1098
1099                  If \({\frac{dy}{dx}}=f(x)g(y)\), then:
1100
1101                  \[\int f(x) \> dx = \int \frac{1}{g(y)} \> dy\]
1102
1103                  \subsubsection*{Euler's method for solving DEs}
1104
1105                  \[\frac{f(x+h) - f(x)}{h} \approx f^\prime (x) \quad \text{for small } h\]
1106
1107                  \[\implies f(x+h) \approx f(x) + hf^\prime(x)\]
1108
1109                \end{multicols}
1110              \end{document}