<!-- $${d(ax^{nx}) \over dx} = an \cdot e^nx$$ -->
+## Antidifferentiation
+
+$$y={x^{n+1} \over n+1} + c$$
+
+## Integration
+
+$$\int f(x) dx = F(x) + c$$
+
+- area enclosed by curves
+- $+c$ should be shown on each step without $\int$
+
+$$\int xn = {x^{n+1} \over n+1} + c$$
+
+### Integral laws
+
+$\int f(x) + g(x) dx = \int f(x) dx + \int g(x) dx$
+$\int k f(x) dx = k \int f(x) dx$
+
+| $f(x)$ | $\int f(x) \cdot dx$ |
+| ------ | -------------------- |
+| $k$ (constant) | $kc + c$ |
+| $x^n (n \in J\\\{-1\})$ | ${1 \over {n+1}}x^{n+1} + c$ |
+