clarify calculus notes
[notes.git] / spec / calculus.md
index 19f97b5aba2cf5b39bcd3ac26dba6f801a4bdc49..3823f37d7dbfc72d5eb0596b20a963276bb03c39 100644 (file)
@@ -130,6 +130,27 @@ If $f(x)={u(x) \over v(x)}$, then $f^\prime(x)={{v(x)u^\prime(x)-u(x)v^\prime(x)
 
 If $y={u(x) \over v(x)}$, then derivative ${dy \over dx} = {{v{du \over dx} - u{dv \over dx}} \over v^2}$
 
+## Logarithms
+
+$$\log_b (x) = n \quad \operatorname{where} \hspace{0.5em} b^n=x$$
+
+Wikipedia:
+
+> the logarithm of a given number $x$ is the exponent to which another fixed number, the base $b$, must be raised, to produce that number $x$
+
+### Logarithmic identities  
+$\log_b (xy)=\log_b x + \log_b y$  
+$\log_b x^n = n \log_b x$  
+$\log_b y^{x^n} = x^n \log_b y$
+
+### $e$ as a logarithm
+
+$$\operatorname{if} y=e^x, \quad \operatorname{then} x=\log_e y$$
+$$\ln x = \log_e x$$
+
+### Differentiating logarithms
+$${d(\log_e x)\over dx} = x^-1 = {1 \over x}$$
+
 ## Solving $e^x$
 
 | $f(x)$ | $f^\prime(x)$ |