[methods] general notes additions
[notes.git] / spec / spec-collated.tex
index 4adcd53d464c205ead2d43104ef40974dc4c6f51..94d61876d683d0dd35373e447df8d2f1ff0f4207 100644 (file)
@@ -2,6 +2,7 @@
 \usepackage[dvipsnames, table]{xcolor}
 \usepackage{amsmath}
 \usepackage{amssymb}
+\usepackage{array}
 \usepackage{blindtext}
 \usepackage{dblfloatfix}
 \usepackage{enumitem}
@@ -9,6 +10,7 @@
 \usepackage[a4paper,margin=2cm]{geometry}
 \usepackage{graphicx}
 \usepackage{harpoon}
+\usepackage{hhline}
 \usepackage{import}
 \usepackage{keystroke}
 \usepackage{listings}
@@ -19,6 +21,7 @@
 \usepackage{multirow}
 \usepackage{pgfplots}
 \usepackage{pst-plot}
+\usepackage{rotating}
 \usepackage{subfiles}
 \usepackage{tabularx}
 \usepackage{tcolorbox}
@@ -43,6 +46,7 @@
   scopes
 }
 
+\newcommand\given[1][]{\:#1\vert\:}
 \newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);}
 
 \usepgflibrary{arrows.meta}
 \definecolor{cas}{HTML}{e6f0fe}
 \definecolor{important}{HTML}{fc9871}
 \definecolor{dark-gray}{gray}{0.2}
+\definecolor{light-gray}{HTML}{cccccc}
+\definecolor{peach}{HTML}{e6beb2}
+\definecolor{lblue}{HTML}{e5e9f0}
 
 \newcommand{\tg}{\mathop{\mathrm{tg}}}
 \newcommand{\cotg}{\mathop{\mathrm{cotg}}}
 \newcommand{\arctg}{\mathop{\mathrm{arctg}}}
 \newcommand{\arccotg}{\mathop{\mathrm{arccotg}}}
 
-\newtcolorbox{warning}{colback=white!90!black, leftrule=3mm, colframe=important, coltext=important, fontupper=\sffamily\bfseries}
-\newtcolorbox{cas}{colframe=cas!75!black, title=On CAS, left*=3mm}
+\newtcolorbox{warning}{colback=white!90!black, leftrule=3mm, colframe=important, coltext=darkgray, fontupper=\sffamily\bfseries}
+\newtcolorbox{cas}{colframe=cas!75!black, fonttitle=\sffamily\bfseries, title=On CAS, left*=3mm}
 
 \begin{document}
 
                   \((b \cdot c)^n = b^n \cdot c^n\)\\
                   \({a^m \div a^n} = {a^{m-n}}\)
 
-                  \subsection*{Derivative rules}
-
-                  \renewcommand{\arraystretch}{1.4}
-                  \begin{tabularx}{\columnwidth}{rX}
-                    \hline
-                    \(f(x)\) & \(f^\prime(x)\)\\
-                    \hline
-                    \(\sin x\) & \(\cos x\)\\
-                    \(\sin ax\) & \(a\cos ax\)\\
-                    \(\cos x\) & \(-\sin x\)\\
-                    \(\cos ax\) & \(-a \sin ax\)\\
-                    \(\tan f(x)\) & \(f^2(x) \sec^2f(x)\)\\
-                    \(e^x\) & \(e^x\)\\
-                    \(e^{ax}\) & \(ae^{ax}\)\\
-                    \(ax^{nx}\) & \(an \cdot e^{nx}\)\\
-                    \(\log_e x\) & \(\dfrac{1}{x}\)\\
-                    \(\log_e {ax}\) & \(\dfrac{1}{x}\)\\
-                    \(\log_e f(x)\) & \(\dfrac{f^\prime (x)}{f(x)}\)\\
-                    \(\sin(f(x))\) & \(f^\prime(x) \cdot \cos(f(x))\)\\
-                    \(\sin^{-1} x\) & \(\dfrac{1}{\sqrt{1-x^2}}\)\\
-                    \(\cos^{-1} x\) & \(\dfrac{-1}{sqrt{1-x^2}}\)\\
-                    \(\tan^{-1} x\) & \(\dfrac{1}{1 + x^2}\)\\
-                    \(\frac{d}{dy}f(y)\) & \(\dfrac{1}{\frac{dx}{dy}}\) (reciprocal)\\
-                    \(uv\) & \(u \frac{dv}{dx}+v\frac{du}{dx} (product rule)\)\\
-                    \(\dfrac{u}{v}\) & \(\dfrac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}\) (quotient rule)\\
-                    \(f(g(x))\) & \(f^\prime(g(x))\cdot g^\prime(x)\)\\
-                    \hline
-                  \end{tabularx}
-
                   \subsection*{Reciprocal derivatives}
 
                   \[\frac{1}{\frac{dy}{dx}} = \frac{dx}{dy}\]
 
                   \subsection*{Differentiating \(x=f(y)\)}
-                  \begin{align*}
-                    \text{Find }& \frac{dx}{dy}\\
-                    \text{Then, }\frac{dx}{dy} &= \frac{1}{\frac{dy}{dx}} \\
-                    \implies {\frac{dy}{dx}} &= \frac{1}{\frac{dx}{dy}}\\
-                    \therefore {\frac{dy}{dx}} &= \frac{1}{\frac{dx}{dy}}
-                  \end{align*}
+                  Find \(\dfrac{dx}{dy}\), then \(\dfrac{dy}{dx} = \dfrac{1}{\left(\dfrac{dx}{dy}\right)}\)
 
                   \subsection*{Second derivative}
                   \begin{align*}f(x) \longrightarrow &f^\prime (x) \longrightarrow f^{\prime\prime}(x)\\
                     \begin{tabularx}{\textwidth}{rXXX}
                       \hline
                       \rowcolor{shade2}
-                      & \centering\(\dfrac{d^2 y}{dx^2} > 0\)  & \centering \(\dfrac{d^2y}{dx^2}<0\) & \(\dfrac{d^2y}{dx^2}=0\) (inflection) \\
+                      & \centering\(\dfrac{d^2 y}{dx^2} > 0\)  & \centering \(\dfrac{d^2y}{dx^2}<0\) & \(\dfrac{d^2y}{dx^2}=0\) (inflection) \\[1.5em]
                       \hline
                       \(\dfrac{dy}{dx}>0\) &
-                      \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-3,  xmax=0.8, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(e^(x))};  \addplot[red] {x/2.5+0.75}; \end{axis}\end{tikzpicture} \\Rising (concave up)}&
+                      \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-3,  xmax=0.8, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(e^(x)};  \addplot[red] {x/2.5+0.75}; \end{axis}\end{tikzpicture} \\Rising (concave up)}&
                         \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=0.1, xmax=4,   scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(ln(x))};  \addplot[red] {x/1.5-0.56}; \end{axis}\end{tikzpicture} \\Rising (concave down)}&
                           \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1.5,  xmax=1.5,   scale=0.2, samples=100] \addplot[blue] {(sin((deg x)))}; \addplot[red] {x}; \end{axis}\end{tikzpicture} \\Rising inflection point}\\
                             \hline
                             \(\dfrac{dy}{dx}<0\) &
-                            \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-.5, xmax=1, ymin=-.5, ymax=.5, scale=0.2, samples=100] \addplot[blue] {(1/(x+1)-1}; \addplot[red] {-x}; \end{axis}\end{tikzpicture} \\Falling (concave up)}&
+                            \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-.5, xmax=1, ymin=-.5, ymax=.5, scale=0.2, samples=100] \addplot[blue] {1/(x+1)-1}; \addplot[red] {-x}; \end{axis}\end{tikzpicture} \\Falling (concave up)}&
                               \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=0,  xmax=1.5, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(2-x*x)^(1/2)};  \addplot[red] {-x+2}; \end{axis}\end{tikzpicture} \\Falling (concave down)}&
                                 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=1.5,  xmax=4.5,   scale=0.2, samples=100] \addplot[blue] {(sin((deg x)))}; \addplot[red] {-x+3.1415}; \end{axis}\end{tikzpicture} \\Falling inflection point}\\
                                   \hline
                                   \(\dfrac{dy}{dx}=0\)&
-                                  \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1,  xmax=1,   scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(x*x))}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \\Local minimum}&                       \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1,  xmax=1,   scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(-x*x))}; \addplot[red, very thick] {0}; \end{axis}\end{tikzpicture} \\Local maximum}&
-                                    \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1,  xmax=1,   scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(x*x*x))}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \(\>\) \begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1,  xmax=1,   scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(-x*x*x))}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture}  \\Stationary inflection point}\\
+                                  \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1,  xmax=1,   scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(x*x)}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \\Local minimum}&                       \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1,  xmax=1,   scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(-x*x)}; \addplot[red, very thick] {0}; \end{axis}\end{tikzpicture} \\Local maximum}&
+                                    \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1,  xmax=1,   scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(x*x*x)}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \(\>\) \begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1,  xmax=1,   scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(-x*x*x)}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture}  \\Stationary inflection point}\\
                                       \hline
                     \end{tabularx}
                   \end{table*}
 
                   \[{\frac{dp}{dx}} = {\frac{dq}{dx}} \quad \text{and} \quad {\frac{dp}{dy}} = {\frac{dq}{dy}}\]
 
-                  \noindent \colorbox{cas}{\textbf{On CAS:}}\\
-                  Action \(\rightarrow\) Calculation \(\rightarrow\) \texttt{impDiff(y\^{}2+ax=5,\ x,\ y)}\\
-                  Returns \(y^\prime= \dots\).
-
-                  \subsection*{Integration}
-
-                  \[\int f(x) \cdot dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)\]
-
-                  \subsection*{Integral laws}
-
-                  \renewcommand{\arraystretch}{1.4}
-                  \begin{tabularx}{\columnwidth}{rX}
-                    \hline
-                    \(f(x)\) & \(\int f(x) \cdot dx\) \\
-                    \hline
-                    \(k\) (constant) & \(kx + c\)\\
-                    \(x^n\) & \(\dfrac{1}{n+1} x^{n+1}\) \\
-                    \(a x^{-n}\) &\(a \cdot \log_e |x| + c\)\\
-                    \(\dfrac{1}{ax+b}\) &\(\dfrac{1}{a} \log_e (ax+b) + c\)\\
-                    \((ax+b)^n\) & \(\dfrac{1}{a(n+1)}(ax+b)^{n-1} + c\>|\>n\ne 1\)\\
-                    \((ax+b)^{-1}\) & \(\dfrac{1}{a}\log_e |ax+b|+c\)\\
-                    \(e^{kx}\) & \(\dfrac{1}{k} e^{kx} + c\)\\
-                    \(e^k\) & \(e^kx + c\)\\
-                    \(\sin kx\) & \(\dfrac{-1}{k} \cos (kx) + c\)\\
-                    \(\cos kx\) & \(\dfrac{1}{k} \sin (kx) + c\)\\
-                    \(\sec^2 kx\) & \(\dfrac{1}{k} \tan(kx) + c\)\\
-                    \(\dfrac{1}{\sqrt{a^2-x^2}}\) & \(\sin^{-1} \dfrac{x}{a} + c \>\vert\> a>0\)\\
-                    \(\dfrac{-1}{\sqrt{a^2-x^2}}\) & \(\cos^{-1} \dfrac{x}{a} + c \>\vert\> a>0\)\\
-                    \(\frac{a}{a^2-x^2}\) & \(\tan^{-1} \frac{x}{a} + c\)\\
-                    \(\frac{f^\prime (x)}{f(x)}\) & \(\log_e f(x) + c\)\\
-                    \(\int f(u) \cdot \frac{du}{dx} \cdot dx\) & \(\int f(u) \cdot du\) (substitution)\\
-                    \(f(x) \cdot g(x)\) & \(\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx\)\\
-                    \hline
-                  \end{tabularx}
-
-                  Note \(\sin^{-1} {x \over a} + \cos^{-1} {x \over a}\) is constant \(\forall x \in (-a, a)\)
-
-                  \subsection*{Definite integrals}
+                  \begin{cas}
+                    Action \(\rightarrow\) Calculation \\
+                      \hspace{1em}\texttt{impDiff(y\^{}2+ax=5,\ x,\ y)} \hfill(returns \(y^\prime= \dots\))
+                  \end{cas}
+
+                  \subsection*{Slope fields}
+
+                  \begin{tikzpicture}[declare function={diff(\x,\y) = \x+\y;}]
+                    \begin{axis}[axis equal, ymin=-4, ymax=4, xmin=-4, xmax=4, ticks=none, enlargelimits=true, ]
+                      \addplot[thick, orange, domain=-4:2] {e^(x)-x-1};
+                      \pgfplotsinvokeforeach{-4,...,4}{%
+                        \draw[gray] ( {#1 -0.1}, {4 - diff(#1, 4) *0.1}) --  ( {#1 +0.1}, {4  + diff(#1, 4) *0.1});
+                        \draw[gray] ( {#1 -0.1}, {3 - diff(#1, 3) *0.1}) --  ( {#1 +0.1}, {3  + diff(#1, 3) *0.1});
+                        \draw[gray] ( {#1 -0.1}, {2 - diff(#1, 2) *0.1}) --  ( {#1 +0.1}, {2  + diff(#1, 2) *0.1});
+                        \draw[gray] ( {#1 -0.1}, {1 - diff(#1, 1) *0.1}) --  ( {#1 +0.1}, {1  + diff(#1, 1) *0.1});
+                        \draw[gray] ( {#1 -0.1}, {0 - diff(#1, 0) *0.1}) --  ( {#1 +0.1}, {0  + diff(#1, 0) *0.1});
+                        \draw[gray] ( {#1 -0.1}, {-1 - diff(#1, -1) *0.1}) --  ( {#1 +0.1}, {-1  + diff(#1, -1) *0.1});
+                        \draw[gray] ( {#1 -0.1}, {-2 - diff(#1, -2) *0.1}) --  ( {#1 +0.1}, {-2  + diff(#1, -2) *0.1});
+                        \draw[gray] ( {#1 -0.1}, {-3 - diff(#1, -3) *0.1}) --  ( {#1 +0.1}, {-3  + diff(#1, -3) *0.1});
+                        \draw[gray] ( {#1 -0.1}, {-4 - diff(#1, -4) *0.1}) --  ( {#1 +0.1}, {-4  + diff(#1, -4) *0.1});
+                      }
+                    \end{axis}
+                  \end{tikzpicture}
+
+                  \subsection*{Parametric equations}
+
+                  For each point on \(\left( f(t), g(t) \right)\):
+
+                  \begin{align*}
+                    \dfrac{dy}{dt} &= \dfrac{dy}{dx} \cdot \dfrac{dx}{dt} \\
+                    \therefore \dfrac{dy}{dx} &= \dfrac{\left(\dfrac{dy}{dt}\right)}{\left(\dfrac{dx}{dt}\right)} \text{ provided } \dfrac{dx}{dt} \ne 0 \\
+                    \text{Also...} \\
+                    \dfrac{d^2y}{dx^2} &= \dfrac{\left(\dfrac{dy^\prime}{dt}\right)}{\left(\dfrac{dx}{dt}\right)} \text{ where } y^\prime = \dfrac{dy}{dx}
+                  \end{align*}
+
+                \subsection*{Integration}
+
+                \[\int f(x) \cdot dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)\]
+
+                  \subsubsection*{Definite integrals}
 
                   \[\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)\]
 
 
                   \subsubsection*{Properties}
 
-                  \[\int^b_a f(x) \> dx = \int^c_a f(x) \> dx + \int^b_c f(x) \> dx\]
-
-                  \[\int^a_a f(x) \> dx = 0\]
-
-                  \[\int^b_a k \cdot f(x) \> dx = k \int^b_a f(x) \> dx\]
-
-                  \[\int^b_a f(x) \pm g(x) \> dx = \int^b_a f(x) \> dx \pm \int^b_a g(x) \> dx\]
-
-                  \[\int^b_a f(x) \> dx = - \int^a_b f(x) \> dx\]
+                  \begin{align*}
+                    \int^b_a f(x) \> dx &= \int^c_a f(x) \> dx + \int^b_c f(x) \> dx \\
+                    \int^a_a f(x) \> dx &= 0 \\
+                    \int^b_a k \cdot f(x) \> dx &= k \int^b_a f(x) \> dx \\
+                    \int^b_a f(x) \pm g(x) \> dx &= \int^b_a f(x) \> dx \pm \int^b_a g(x) \> dx \\
+                    \int^b_a f(x) \> dx &= - \int^a_b f(x) \> dx \\
+                  \end{align*}
 
                   \subsection*{Integration by substitution}
 
                   \[\int f(u) {\frac{du}{dx}} \cdot dx = \int f(u) \cdot du\]
 
-                  \noindent Note \(f(u)\) must be 1:1 \(\implies\) one \(x\) for each \(y\)
+                  \begin{warning}
+                    \(\boldsymbol{f(u)}\) must be 1:1 \(\boldsymbol{\implies}\) one \(\boldsymbol{x}\) for each \(\boldsymbol{y}\)
+                  \end{warning}
                   \begin{align*}\text{e.g. for } y&=\int(2x+1)\sqrt{x+4} \cdot dx\\
                     \text{let } u&=x+4\\
                     \implies& {\frac{du}{dx}} = 1\\
 
                   \subsection*{Partial fractions}
 
-                  \colorbox{cas}{On CAS:}\\
-                  \indent Action \(\rightarrow\) Transformation \(\rightarrow\)
-                  \texttt{expand/combine}\\
-                  \indent Interactive \(\rightarrow\) Transformation \(\rightarrow\)
-                  Expand \(\rightarrow\) Partial
+                  To factorise \(f(x) = \frac{\delta}{\alpha \cdot \beta}\):
+                  \begin{align*}
+                    \dfrac{\delta}{\alpha \cdot \beta \cdot \gamma} &= \dfrac{A}{\alpha} + \dfrac{B}{\beta} + \dfrac{C}{\gamma} \tag{1} \\
+                    \text{Multiply by } & (\alpha \cdot \beta \cdot \gamma) \text{:} \\
+                    \delta &= \beta\gamma A + \alpha\gamma B +\alpha\beta C \tag{2} \\
+                    \text{Substitute } x &= \{\alpha, \beta, \gamma\} \text{ into (2) to find denominators}
+                  \end{align*}
+
+                  \subsubsection*{Repeated linear factors}
+
+                  \[ \dfrac{p(x)}{(x-a)^n} = \dfrac{A_1}{(x-a)} + \dfrac{A_2}{(x-a)^2} + \dots + \dfrac{A_n}{(x-a)^n} \]
+
+                  \subsubsection*{Irreducible quadratic factors}
+
+                  \[ \text{e.g. } \dfrac{3x-4}{(2x-3)(x^2+5)} = \dfrac{A}{2x-3} + \dfrac{Bx+C}{x^2+5} \]
+
+                  \begin{cas}
+                    Action \(\rightarrow\) Transformation:\\
+                    \hspace{1em} \texttt{expand(..., x)}
+
+                    To reverse, use \texttt{combine(...)}
+                  \end{cas}
 
                   \subsection*{Graphing integrals on CAS}
 
-                  \colorbox{cas}{In main:} Interactive \(\rightarrow\) Calculation \(\rightarrow\)
-                  \(\int\) (\(\rightarrow\) Definite)\\
-                  Restrictions: \texttt{Define\ f(x)=..} then \texttt{f(x)\textbar{}x\textgreater{}..}
+                  \begin{cas}
+                    \textbf{In main:} Interactive \(\rightarrow\) Calculation \(\rightarrow\) \(\int\)\\
+                    Restrictions: \texttt{Define\ f(x)=..} then \texttt{f(x)\textbar{}x\textgreater{}..}
+                  \end{cas}
 
                   \subsection*{Applications of antidifferentiation}
 
 
                   Approximate as sum of infinitesimally-thick cylinders
 
-                  \subsubsection*{Rotation about \(x\)-axis}
+                  \subsubsection*{Rotation about \(\boldsymbol{x}\)-axis}
 
-                  \begin{align*}
-                    V &= \int^{x=b}_{x-a} \pi y^2 \> dx \\
-                    &= \pi \int^b_a (f(x))^2 \> dx
-                  \end{align*}
+                  \[ V = \pi\int^{x=b}_{x=a} f(x)^2 \> dx \]
 
-                  \subsubsection*{Rotation about \(y\)-axis}
+                  \subsubsection*{Rotation about \(\boldsymbol{y}\)-axis}
 
                   \begin{align*}
-                    V &= \int^{y=b}_{y=a} \pi x^2 \> dy \\
-                    &= \pi \int^b_a (f(y))^2 \> dy
+                    V &= \pi \int^{y=b}_{y=a} x^2 \> dy \\
+                    &= \pi \int^{y=b}_{y=a} (f(y))^2 \> dy
                   \end{align*}
 
-                  \subsubsection*{Regions not bound by \(y=0\)}
+                  \subsubsection*{Regions not bound by \(\boldsymbol{y=0}\)}
 
                   \[V = \pi \int^b_a f(x)^2 - g(x)^2 \> dx\]
                   \hfill where \(f(x) > g(x)\)
 
                   \[L = \int^b_a \sqrt{{\frac{dx}{dt}} + ({\frac{dy}{dt}})^2} \> dt \quad \text{(parametric)}\]
 
-                  \noindent \colorbox{cas}{On CAS:}\\
-                  \indent Evaluate formula,\\
-                  \indent or Interactive \(\rightarrow\) Calculation
-                  \(\rightarrow\) Line \(\rightarrow\) \texttt{arcLen}
+                  \begin{cas}
+                    \begin{enumerate}[label=\alph*), leftmargin=5mm]
+                      \item Evaluate formula
+                      \item Interactive \(\rightarrow\) Calculation \(\rightarrow\) Line \(\rightarrow\) \texttt{arcLen}
+                    \end{enumerate}
+                  \end{cas}
 
                   \subsection*{Rates}
 
 
                   \[\implies f(x+h) \approx f(x) + hf^\prime(x)\]
 
-              
+                  \include{calculus-rules}
+
     \section{Kinematics \& Mechanics}
 
       \subsection*{Constant acceleration}