[methods] general notes additions
authorAndrew Lorimer <andrew@lorimer.id.au>
Sat, 28 Sep 2019 12:22:52 +0000 (22:22 +1000)
committerAndrew Lorimer <andrew@lorimer.id.au>
Sat, 28 Sep 2019 12:22:52 +0000 (22:22 +1000)
methods/longdiv.tex [new file with mode: 0644]
methods/methods-collated.pdf
methods/methods-collated.tex
spec/calculus-rules.tex [new file with mode: 0644]
spec/normal-dist-graph.tex
spec/spec-collated.pdf
spec/spec-collated.tex
spec/statistics.pdf
spec/statistics.tex
diff --git a/methods/longdiv.tex b/methods/longdiv.tex
new file mode 100644 (file)
index 0000000..4c9a1d4
--- /dev/null
@@ -0,0 +1,53 @@
+%  longdiv.tex  v.1  (1994)  Donald Arseneau  
+%
+%  Work out and print integer long division problems.  Use:
+%       \longdiv{numerator}{denominator}
+%  The numerator and denominator (divisor and dividend) must be integers, and
+%  the quotient is an integer too.  \longdiv leaves a remainder.
+%  Use this in any type of TeX.
+
+\newcount\gpten % (global) power-of-ten -- tells which digit we are doing
+\countdef\rtot2 % running total -- remainder so far
+\countdef\LDscratch4 % scratch
+
+\def\longdiv#1#2{%
+ \vtop{\normalbaselines \offinterlineskip
+   \setbox\strutbox\hbox{\vrule height 2.1ex depth .5ex width0ex}%
+   \def\showdig{$\underline{\the\LDscratch\strut}$\cr\the\rtot\strut\cr
+       \noalign{\kern-.2ex}}%
+   \global\rtot=#1\relax
+   \count0=\rtot\divide\count0by#2\edef\quotient{\the\count0}%\show\quotient
+   % make list macro out of digits in quotient:
+   \def\temp##1{\ifx##1\temp\else \noexpand\dodig ##1\expandafter\temp\fi}%
+   \edef\routine{\expandafter\temp\quotient\temp}%
+   % process list to give power-of-ten:
+   \def\dodig##1{\global\multiply\gpten by10 }\global\gpten=1 \routine
+   % to display effect of one digit in quotient (zero ignored):
+   \def\dodig##1{\global\divide\gpten by10
+      \LDscratch =\gpten
+      \multiply\LDscratch  by##1%
+      \multiply\LDscratch  by#2%
+      \global\advance\rtot-\LDscratch \relax
+      \ifnum\LDscratch>0 \showdig \fi % must hide \cr in a macro to skip it
+   }%
+   \tabskip=0pt
+   \halign{\hfil##\cr % \halign for entire division problem
+     $\quotient$\strut\cr
+     #2$\,\overline{\vphantom{\big)}%
+     \hbox{\smash{\raise3.5\fontdimen8\textfont3\hbox{$\big)$}}}%
+     \mkern2mu \the\rtot}$\cr\noalign{\kern-.2ex}
+     \routine \cr % do each digit in quotient
+}}}
+
+\endinput % Demonstration below:
+
+\noindent Here are some long division problems
+
+\indent
+\longdiv{12345}{13} \quad
+\longdiv{123}{1234} \quad
+\longdiv{31415926}{2} \quad
+\longdiv{81}{3} \quad
+\longdiv{1132}{99} \quad
+\longdiv{86491}{94}
+\bye
index 776aa119c23ac4e55c0d1a609e1dbf9f6805e2f3..35e900eddb3c27d47ecc19c8f006267cf35a6eb8 100644 (file)
Binary files a/methods/methods-collated.pdf and b/methods/methods-collated.pdf differ
index a3a1e796dc6cd2ae5b1aa0b637147ffbc0a1a394..4a0403a6248f93e03ae0378cc2e6c106cda9b30e 100644 (file)
@@ -18,6 +18,7 @@
 \usepackage{multirow}
 \usepackage{newclude}
 \usepackage{pgfplots}
+\usepackage{polynom}
 \usepackage{pst-plot}
 \usepackage{standalone}
 \usepackage{subfiles}
@@ -97,6 +98,7 @@
 
 \newtcolorbox{cas}{colframe=cas!75!black, title=On CAS, left*=3mm}
 \newtcolorbox{warning}{colback=white!90!black, leftrule=3mm, colframe=important, coltext=important, fontupper=\sffamily\bfseries}
+\newtcolorbox{theorembox}[1]{colback=green!10!white, colframe=blue!20!white, coltitle=black, fontupper=\sffamily, fonttitle=\sffamily, #1}
 
 
 \begin{document}
@@ -184,18 +186,22 @@ For \(x^n\), parity of \(n \equiv\) parity of function
 
   \begin{enumerate} \tightlist
     \item Write as matrices: \(\begin{bmatrix}p & q \\ r & s \end{bmatrix}  \begin{bmatrix} x \\ y \end{bmatrix}  =  \begin{bmatrix} a \\ b \end{bmatrix}\)
-      \item Find determinant of first matrix: \(\Delta = ps-qr\)
-      \item Let \(\Delta = 0\) for number of solutions \(\ne 1\)\\
-        or let \(\Delta \ne 0\) for one unique solution.
-      \item Solve determinant equation to find variable \\
+      \item Find \(\det(\text{first matrix}) = ps-qr\)
+      \item Let \(\det = 0\) for \(\{0,\infty\}\) solutions
+        or \(\det \ne 0\) for 1 solution
+      \item Solve to find variable \\ \\
         \textbf{For infinite/no solutions:}
       \item Substitute variable into both original equations
-      \item Rearrange equations so that LHS of each is the same
-      \item \(\text{RHS}(1) = \text{RHS}(2) \implies (1)=(2) \> \forall x\) (\(\infty\) solns)\\
-        \(\text{RHS}(1) \ne \text{RHS}(2) \implies (1)\ne(2) \> \forall x\) (0 solns)
+      \item Rearrange so that LHS of each is the same
+      \item \(\begin{aligned}[t]
+          \infty \text{ solns: } & \text{RHS}(1) = \text{RHS}(2) \implies (1)=(2) \> \forall x \\
+          0 \text{ solns: } & \text{RHS}(1) \ne \text{RHS}(2) \implies (1)\ne(2) \> \forall x
+      \end{aligned}\)
   \end{enumerate}
 
-  \colorbox{cas}{On CAS:} Matrix \(\rightarrow\) \texttt{det}
+  \begin{cas}
+    Action \(\rightarrow\) Matrix \(\rightarrow\) Calculation \(\rightarrow\) \texttt{det}
+  \end{cas}
 
   \subsubsection*{Solving \(\protect\begin{cases}a_1 x + b_1 y + c_1 z = d_1 \\ a_2 x + b_2 y + c_2 z = d_2 \\ a_3 x + b_3 y + c_3 z = d_3\protect\end{cases}\)}
 
@@ -304,6 +310,47 @@ For \(x^n\), parity of \(n \equiv\) parity of function
 
       \section{Polynomials}
 
+      \subsection*{Factor theorem}
+
+      \begin{theorembox}{title=General form \(\beta x + \alpha\)}
+        If \(\beta x + \alpha\) is a factor of \(P(x)\), \\
+        \-\hspace{1em}then \(P(-\dfrac{\alpha}{\beta})=0\).
+      \end{theorembox}
+
+      \begin{theorembox}{title=Simple form \(x-a\)}
+        If \((x-a)\) is a factor of \(P(x)\), remainder \(R=0\). \\
+        \-\hspace{1em}\(\implies P(a)=0\)
+      \end{theorembox}
+
+      \subsection*{Remainder theorem}
+
+      \begin{theorembox}{}
+        When \(P(x)\) is divided by \(\beta x + \alpha\), the remainder is \(-\dfrac{\alpha}{\beta}\).
+      \end{theorembox}
+
+      \subsection*{Rational root theorem}
+      Let \(P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0\) be a polynomial of degree \(n\) with \(a_i \in \mathbb{Z} \forall a\). Let \(\alpha, \beta \in \mathbb{Z}\) such that their highest common factor is 1 (i.e. relatively prime).
+
+      If \(\beta x + \alpha\) is a factor of \(P(x)\), then \(\beta\) divides \(a_n\) and \(\alpha\) divides \(a_0\) .
+
+      \subsubsection*{Discriminant}
+      \[\begin{cases}
+        b^2-4ac > 0 & \text{two solutions} \\
+        b^2-4ac = 0 & \text{one solution} \\
+        b^2-4ac < 0 & \text{no solutions}
+      \end{cases}\]
+      \begin{warning}
+        Flip inequality sign when multiplying by -1
+      \end{warning}
+
+      \subsection*{Long division}
+
+      \[ \polylongdiv{x^2+2x+4}{x-1} \]
+
+      \begin{cas}
+        Action \(\rightarrow\) Transformation \(\rightarrow\) \texttt{propFrac}
+      \end{cas}
+
       \subsection*{Linear equations}
 
       \subsubsection*{Forms}
@@ -322,8 +369,11 @@ For \(x^n\), parity of \(n \equiv\) parity of function
       Distance: \(|\vec{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)
 
       \subsection*{Quadratics}
+
       \setlength{\abovedisplayskip}{1pt}
       \setlength{\belowdisplayskip}{1pt}
+
+      \textbf{Linear factorisation}
       \[ x^2 + bx + c = (x+m)(x+n) \]
       \hfill where \(mn=c, \> m+n=b\)
 
diff --git a/spec/calculus-rules.tex b/spec/calculus-rules.tex
new file mode 100644 (file)
index 0000000..5371aaf
--- /dev/null
@@ -0,0 +1,64 @@
+\subsection*{Derivatives}
+
+\rowcolors{1}{white}{peach}
+\renewcommand{\arraystretch}{1.4}
+
+\begin{tabularx}{\columnwidth}{rX}
+  \hline
+  \hspace{6em}\(f(x)\) & \(f^\prime(x)\)\\
+  \hline
+  \(\sin x\) & \(\cos x\)\\
+  \(\sin ax\) & \(a\cos ax\)\\
+  \(\cos x\) & \(-\sin x\)\\
+  \(\cos ax\) & \(-a \sin ax\)\\
+  \(\tan f(x)\) & \(f^2(x) \sec^2f(x)\)\\
+  \(e^x\) & \(e^x\)\\
+  \(e^{ax}\) & \(ae^{ax}\)\\
+  \(ax^{nx}\) & \(an \cdot e^{nx}\)\\
+  \(\log_e x\) & \(\dfrac{1}{x}\)\\
+  \(\log_e {ax}\) & \(\dfrac{1}{x}\)\\
+  \(\log_e f(x)\) & \(\dfrac{f^\prime (x)}{f(x)}\)\\
+  \(\sin(f(x))\) & \(f^\prime(x) \cdot \cos(f(x))\)\\
+  \(\sin^{-1} x\) & \(\dfrac{1}{\sqrt{1-x^2}}\)\\
+  \(\cos^{-1} x\) & \(\dfrac{-1}{\sqrt{1-x^2}}\)\\
+  \(\tan^{-1} x\) & \(\dfrac{1}{1 + x^2}\)\\
+  \(\frac{d}{dy}f(y)\) & \(\dfrac{1}{\frac{dx}{dy}}\) \hfill(reciprocal)\\
+  \(uv\) & \(u \frac{dv}{dx}+v\frac{du}{dx}\) \hfill(product rule)\\
+  \(\dfrac{u}{v}\) & \(\dfrac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}\) \hfill(quotient rule)\\
+  \(f(g(x))\) & \(f^\prime(g(x))\cdot g^\prime(x)\)\\
+  \hline
+\end{tabularx}
+
+\vfill
+
+\subsection*{Antiderivatives}
+
+\rowcolors{1}{white}{lblue}
+\renewcommand{\arraystretch}{1.4}
+
+\begin{tabularx}{\columnwidth}{rX}
+  \hline
+  \(f(x)\) & \(\int f(x) \cdot dx\) \\
+  \hline
+  \(k\) (constant) & \(kx + c\)\\
+  \(x^n\) & \(\dfrac{1}{n+1} x^{n+1}\) \\
+  \(a x^{-n}\) &\(a \cdot \log_e |x| + c\)\\
+  \(\dfrac{1}{ax+b}\) &\(\dfrac{1}{a} \log_e (ax+b) + c\)\\
+  \((ax+b)^n\) & \(\dfrac{1}{a(n+1)}(ax+b)^{n-1} + c\>|\>n\ne 1\)\\
+  \((ax+b)^{-1}\) & \(\dfrac{1}{a}\log_e |ax+b|+c\)\\
+  \(e^{kx}\) & \(\dfrac{1}{k} e^{kx} + c\)\\
+  \(e^k\) & \(e^kx + c\)\\
+  \(\sin kx\) & \(\dfrac{-1}{k} \cos (kx) + c\)\\
+  \(\cos kx\) & \(\dfrac{1}{k} \sin (kx) + c\)\\
+  \(\sec^2 kx\) & \(\dfrac{1}{k} \tan(kx) + c\)\\
+  \(\dfrac{1}{\sqrt{a^2-x^2}}\) & \(\sin^{-1} \dfrac{x}{a} + c \>\vert\> a>0\)\\
+  \(\dfrac{-1}{\sqrt{a^2-x^2}}\) & \(\cos^{-1} \dfrac{x}{a} + c \>\vert\> a>0\)\\
+  \(\frac{a}{a^2-x^2}\) & \(\tan^{-1} \frac{x}{a} + c\)\\
+  \(\frac{f^\prime (x)}{f(x)}\) & \(\log_e f(x) + c\)\\
+  \(\int f(u) \cdot \frac{du}{dx} \cdot dx\) & \(\int f(u) \cdot du\) \hfill(substitution)\\
+  \(f(x) \cdot g(x)\) & \(\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx\)\\
+  \hline
+\end{tabularx}
+
+\vspace{1em}
+Note \(\sin^{-1} \left(\dfrac{x}{a}\right) + \cos^{-1} \left(\dfrac{x}{a}\right)\) is constant \(\forall \> x \in (-a, a)\)
index b0b558ab5b5914f09917fa254b3e2bc158a1cd62..073bee8ecd99be126ea759e3353f9fbaa3c6337d 100644 (file)
@@ -52,9 +52,9 @@
     \fill[lightgray!30] (-2,0)  -- plot[id=f3,domain=-2:2,samples=50] function {1/(0.75*sqrt(2*pi))*exp(-x*x*0.5/(0.75*0.75))} -- (2,0) -- cycle;
     \fill[white!30] (-1,0)  -- plot[id=f3,domain=-1:1,samples=50] function {1/(0.75*sqrt(2*pi))*exp(-x*x*0.5/(0.75*0.75))} -- (1,0) -- cycle;
     \begin{scope}[<->]
-      \draw (-1,0.35) -- (1,0.35) node [midway, fill=white] {68.3\%};
-      \draw (-2,0.25) -- (2,0.25) node [midway, fill=white] {95.5\%};
-      \draw (-3,0.15) -- (3,0.15) node [midway, fill=white] {99.7\%};
+      \draw (-1,0.35) -- (1,0.35) node [midway, fill=white] {68.27\%};
+      \draw (-2,0.25) -- (2,0.25) node [midway, fill=white] {95.35\%};
+      \draw (-3,0.15) -- (3,0.15) node [midway, fill=white] {99.73\%};
     \end{scope}
     \begin{scope}[-, dashed, gray]
       \draw (-1,0) -- (-1, 0.35);
index 705bf5d3a644d3e2067a96414ca760834bd1e307..7b998a92be779cb72a149b61be13c27b80ef4a20 100644 (file)
Binary files a/spec/spec-collated.pdf and b/spec/spec-collated.pdf differ
index 4adcd53d464c205ead2d43104ef40974dc4c6f51..94d61876d683d0dd35373e447df8d2f1ff0f4207 100644 (file)
@@ -2,6 +2,7 @@
 \usepackage[dvipsnames, table]{xcolor}
 \usepackage{amsmath}
 \usepackage{amssymb}
+\usepackage{array}
 \usepackage{blindtext}
 \usepackage{dblfloatfix}
 \usepackage{enumitem}
@@ -9,6 +10,7 @@
 \usepackage[a4paper,margin=2cm]{geometry}
 \usepackage{graphicx}
 \usepackage{harpoon}
+\usepackage{hhline}
 \usepackage{import}
 \usepackage{keystroke}
 \usepackage{listings}
@@ -19,6 +21,7 @@
 \usepackage{multirow}
 \usepackage{pgfplots}
 \usepackage{pst-plot}
+\usepackage{rotating}
 \usepackage{subfiles}
 \usepackage{tabularx}
 \usepackage{tcolorbox}
@@ -43,6 +46,7 @@
   scopes
 }
 
+\newcommand\given[1][]{\:#1\vert\:}
 \newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);}
 
 \usepgflibrary{arrows.meta}
 \definecolor{cas}{HTML}{e6f0fe}
 \definecolor{important}{HTML}{fc9871}
 \definecolor{dark-gray}{gray}{0.2}
+\definecolor{light-gray}{HTML}{cccccc}
+\definecolor{peach}{HTML}{e6beb2}
+\definecolor{lblue}{HTML}{e5e9f0}
 
 \newcommand{\tg}{\mathop{\mathrm{tg}}}
 \newcommand{\cotg}{\mathop{\mathrm{cotg}}}
 \newcommand{\arctg}{\mathop{\mathrm{arctg}}}
 \newcommand{\arccotg}{\mathop{\mathrm{arccotg}}}
 
-\newtcolorbox{warning}{colback=white!90!black, leftrule=3mm, colframe=important, coltext=important, fontupper=\sffamily\bfseries}
-\newtcolorbox{cas}{colframe=cas!75!black, title=On CAS, left*=3mm}
+\newtcolorbox{warning}{colback=white!90!black, leftrule=3mm, colframe=important, coltext=darkgray, fontupper=\sffamily\bfseries}
+\newtcolorbox{cas}{colframe=cas!75!black, fonttitle=\sffamily\bfseries, title=On CAS, left*=3mm}
 
 \begin{document}
 
                   \((b \cdot c)^n = b^n \cdot c^n\)\\
                   \({a^m \div a^n} = {a^{m-n}}\)
 
-                  \subsection*{Derivative rules}
-
-                  \renewcommand{\arraystretch}{1.4}
-                  \begin{tabularx}{\columnwidth}{rX}
-                    \hline
-                    \(f(x)\) & \(f^\prime(x)\)\\
-                    \hline
-                    \(\sin x\) & \(\cos x\)\\
-                    \(\sin ax\) & \(a\cos ax\)\\
-                    \(\cos x\) & \(-\sin x\)\\
-                    \(\cos ax\) & \(-a \sin ax\)\\
-                    \(\tan f(x)\) & \(f^2(x) \sec^2f(x)\)\\
-                    \(e^x\) & \(e^x\)\\
-                    \(e^{ax}\) & \(ae^{ax}\)\\
-                    \(ax^{nx}\) & \(an \cdot e^{nx}\)\\
-                    \(\log_e x\) & \(\dfrac{1}{x}\)\\
-                    \(\log_e {ax}\) & \(\dfrac{1}{x}\)\\
-                    \(\log_e f(x)\) & \(\dfrac{f^\prime (x)}{f(x)}\)\\
-                    \(\sin(f(x))\) & \(f^\prime(x) \cdot \cos(f(x))\)\\
-                    \(\sin^{-1} x\) & \(\dfrac{1}{\sqrt{1-x^2}}\)\\
-                    \(\cos^{-1} x\) & \(\dfrac{-1}{sqrt{1-x^2}}\)\\
-                    \(\tan^{-1} x\) & \(\dfrac{1}{1 + x^2}\)\\
-                    \(\frac{d}{dy}f(y)\) & \(\dfrac{1}{\frac{dx}{dy}}\) (reciprocal)\\
-                    \(uv\) & \(u \frac{dv}{dx}+v\frac{du}{dx} (product rule)\)\\
-                    \(\dfrac{u}{v}\) & \(\dfrac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}\) (quotient rule)\\
-                    \(f(g(x))\) & \(f^\prime(g(x))\cdot g^\prime(x)\)\\
-                    \hline
-                  \end{tabularx}
-
                   \subsection*{Reciprocal derivatives}
 
                   \[\frac{1}{\frac{dy}{dx}} = \frac{dx}{dy}\]
 
                   \subsection*{Differentiating \(x=f(y)\)}
-                  \begin{align*}
-                    \text{Find }& \frac{dx}{dy}\\
-                    \text{Then, }\frac{dx}{dy} &= \frac{1}{\frac{dy}{dx}} \\
-                    \implies {\frac{dy}{dx}} &= \frac{1}{\frac{dx}{dy}}\\
-                    \therefore {\frac{dy}{dx}} &= \frac{1}{\frac{dx}{dy}}
-                  \end{align*}
+                  Find \(\dfrac{dx}{dy}\), then \(\dfrac{dy}{dx} = \dfrac{1}{\left(\dfrac{dx}{dy}\right)}\)
 
                   \subsection*{Second derivative}
                   \begin{align*}f(x) \longrightarrow &f^\prime (x) \longrightarrow f^{\prime\prime}(x)\\
                     \begin{tabularx}{\textwidth}{rXXX}
                       \hline
                       \rowcolor{shade2}
-                      & \centering\(\dfrac{d^2 y}{dx^2} > 0\)  & \centering \(\dfrac{d^2y}{dx^2}<0\) & \(\dfrac{d^2y}{dx^2}=0\) (inflection) \\
+                      & \centering\(\dfrac{d^2 y}{dx^2} > 0\)  & \centering \(\dfrac{d^2y}{dx^2}<0\) & \(\dfrac{d^2y}{dx^2}=0\) (inflection) \\[1.5em]
                       \hline
                       \(\dfrac{dy}{dx}>0\) &
-                      \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-3,  xmax=0.8, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(e^(x))};  \addplot[red] {x/2.5+0.75}; \end{axis}\end{tikzpicture} \\Rising (concave up)}&
+                      \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-3,  xmax=0.8, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(e^(x)};  \addplot[red] {x/2.5+0.75}; \end{axis}\end{tikzpicture} \\Rising (concave up)}&
                         \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=0.1, xmax=4,   scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(ln(x))};  \addplot[red] {x/1.5-0.56}; \end{axis}\end{tikzpicture} \\Rising (concave down)}&
                           \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1.5,  xmax=1.5,   scale=0.2, samples=100] \addplot[blue] {(sin((deg x)))}; \addplot[red] {x}; \end{axis}\end{tikzpicture} \\Rising inflection point}\\
                             \hline
                             \(\dfrac{dy}{dx}<0\) &
-                            \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-.5, xmax=1, ymin=-.5, ymax=.5, scale=0.2, samples=100] \addplot[blue] {(1/(x+1)-1}; \addplot[red] {-x}; \end{axis}\end{tikzpicture} \\Falling (concave up)}&
+                            \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-.5, xmax=1, ymin=-.5, ymax=.5, scale=0.2, samples=100] \addplot[blue] {1/(x+1)-1}; \addplot[red] {-x}; \end{axis}\end{tikzpicture} \\Falling (concave up)}&
                               \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=0,  xmax=1.5, scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(2-x*x)^(1/2)};  \addplot[red] {-x+2}; \end{axis}\end{tikzpicture} \\Falling (concave down)}&
                                 \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=1.5,  xmax=4.5,   scale=0.2, samples=100] \addplot[blue] {(sin((deg x)))}; \addplot[red] {-x+3.1415}; \end{axis}\end{tikzpicture} \\Falling inflection point}\\
                                   \hline
                                   \(\dfrac{dy}{dx}=0\)&
-                                  \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1,  xmax=1,   scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(x*x))}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \\Local minimum}&                       \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1,  xmax=1,   scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(-x*x))}; \addplot[red, very thick] {0}; \end{axis}\end{tikzpicture} \\Local maximum}&
-                                    \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1,  xmax=1,   scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(x*x*x))}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \(\>\) \begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1,  xmax=1,   scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(-x*x*x))}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture}  \\Stationary inflection point}\\
+                                  \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1,  xmax=1,   scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(x*x)}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \\Local minimum}&                       \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1,  xmax=1,   scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(-x*x)}; \addplot[red, very thick] {0}; \end{axis}\end{tikzpicture} \\Local maximum}&
+                                    \makecell{\\\begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1,  xmax=1,   scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(x*x*x)}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture} \(\>\) \begin{tikzpicture}\begin{axis}[axis x line=none, axis y line=none, xmin=-1,  xmax=1,   scale=0.2, samples=50, unbounded coords=jump] \addplot[blue] {(-x*x*x)}; \addplot[red, thick] {0}; \end{axis}\end{tikzpicture}  \\Stationary inflection point}\\
                                       \hline
                     \end{tabularx}
                   \end{table*}
 
                   \[{\frac{dp}{dx}} = {\frac{dq}{dx}} \quad \text{and} \quad {\frac{dp}{dy}} = {\frac{dq}{dy}}\]
 
-                  \noindent \colorbox{cas}{\textbf{On CAS:}}\\
-                  Action \(\rightarrow\) Calculation \(\rightarrow\) \texttt{impDiff(y\^{}2+ax=5,\ x,\ y)}\\
-                  Returns \(y^\prime= \dots\).
-
-                  \subsection*{Integration}
-
-                  \[\int f(x) \cdot dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)\]
-
-                  \subsection*{Integral laws}
-
-                  \renewcommand{\arraystretch}{1.4}
-                  \begin{tabularx}{\columnwidth}{rX}
-                    \hline
-                    \(f(x)\) & \(\int f(x) \cdot dx\) \\
-                    \hline
-                    \(k\) (constant) & \(kx + c\)\\
-                    \(x^n\) & \(\dfrac{1}{n+1} x^{n+1}\) \\
-                    \(a x^{-n}\) &\(a \cdot \log_e |x| + c\)\\
-                    \(\dfrac{1}{ax+b}\) &\(\dfrac{1}{a} \log_e (ax+b) + c\)\\
-                    \((ax+b)^n\) & \(\dfrac{1}{a(n+1)}(ax+b)^{n-1} + c\>|\>n\ne 1\)\\
-                    \((ax+b)^{-1}\) & \(\dfrac{1}{a}\log_e |ax+b|+c\)\\
-                    \(e^{kx}\) & \(\dfrac{1}{k} e^{kx} + c\)\\
-                    \(e^k\) & \(e^kx + c\)\\
-                    \(\sin kx\) & \(\dfrac{-1}{k} \cos (kx) + c\)\\
-                    \(\cos kx\) & \(\dfrac{1}{k} \sin (kx) + c\)\\
-                    \(\sec^2 kx\) & \(\dfrac{1}{k} \tan(kx) + c\)\\
-                    \(\dfrac{1}{\sqrt{a^2-x^2}}\) & \(\sin^{-1} \dfrac{x}{a} + c \>\vert\> a>0\)\\
-                    \(\dfrac{-1}{\sqrt{a^2-x^2}}\) & \(\cos^{-1} \dfrac{x}{a} + c \>\vert\> a>0\)\\
-                    \(\frac{a}{a^2-x^2}\) & \(\tan^{-1} \frac{x}{a} + c\)\\
-                    \(\frac{f^\prime (x)}{f(x)}\) & \(\log_e f(x) + c\)\\
-                    \(\int f(u) \cdot \frac{du}{dx} \cdot dx\) & \(\int f(u) \cdot du\) (substitution)\\
-                    \(f(x) \cdot g(x)\) & \(\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx\)\\
-                    \hline
-                  \end{tabularx}
-
-                  Note \(\sin^{-1} {x \over a} + \cos^{-1} {x \over a}\) is constant \(\forall x \in (-a, a)\)
-
-                  \subsection*{Definite integrals}
+                  \begin{cas}
+                    Action \(\rightarrow\) Calculation \\
+                      \hspace{1em}\texttt{impDiff(y\^{}2+ax=5,\ x,\ y)} \hfill(returns \(y^\prime= \dots\))
+                  \end{cas}
+
+                  \subsection*{Slope fields}
+
+                  \begin{tikzpicture}[declare function={diff(\x,\y) = \x+\y;}]
+                    \begin{axis}[axis equal, ymin=-4, ymax=4, xmin=-4, xmax=4, ticks=none, enlargelimits=true, ]
+                      \addplot[thick, orange, domain=-4:2] {e^(x)-x-1};
+                      \pgfplotsinvokeforeach{-4,...,4}{%
+                        \draw[gray] ( {#1 -0.1}, {4 - diff(#1, 4) *0.1}) --  ( {#1 +0.1}, {4  + diff(#1, 4) *0.1});
+                        \draw[gray] ( {#1 -0.1}, {3 - diff(#1, 3) *0.1}) --  ( {#1 +0.1}, {3  + diff(#1, 3) *0.1});
+                        \draw[gray] ( {#1 -0.1}, {2 - diff(#1, 2) *0.1}) --  ( {#1 +0.1}, {2  + diff(#1, 2) *0.1});
+                        \draw[gray] ( {#1 -0.1}, {1 - diff(#1, 1) *0.1}) --  ( {#1 +0.1}, {1  + diff(#1, 1) *0.1});
+                        \draw[gray] ( {#1 -0.1}, {0 - diff(#1, 0) *0.1}) --  ( {#1 +0.1}, {0  + diff(#1, 0) *0.1});
+                        \draw[gray] ( {#1 -0.1}, {-1 - diff(#1, -1) *0.1}) --  ( {#1 +0.1}, {-1  + diff(#1, -1) *0.1});
+                        \draw[gray] ( {#1 -0.1}, {-2 - diff(#1, -2) *0.1}) --  ( {#1 +0.1}, {-2  + diff(#1, -2) *0.1});
+                        \draw[gray] ( {#1 -0.1}, {-3 - diff(#1, -3) *0.1}) --  ( {#1 +0.1}, {-3  + diff(#1, -3) *0.1});
+                        \draw[gray] ( {#1 -0.1}, {-4 - diff(#1, -4) *0.1}) --  ( {#1 +0.1}, {-4  + diff(#1, -4) *0.1});
+                      }
+                    \end{axis}
+                  \end{tikzpicture}
+
+                  \subsection*{Parametric equations}
+
+                  For each point on \(\left( f(t), g(t) \right)\):
+
+                  \begin{align*}
+                    \dfrac{dy}{dt} &= \dfrac{dy}{dx} \cdot \dfrac{dx}{dt} \\
+                    \therefore \dfrac{dy}{dx} &= \dfrac{\left(\dfrac{dy}{dt}\right)}{\left(\dfrac{dx}{dt}\right)} \text{ provided } \dfrac{dx}{dt} \ne 0 \\
+                    \text{Also...} \\
+                    \dfrac{d^2y}{dx^2} &= \dfrac{\left(\dfrac{dy^\prime}{dt}\right)}{\left(\dfrac{dx}{dt}\right)} \text{ where } y^\prime = \dfrac{dy}{dx}
+                  \end{align*}
+
+                \subsection*{Integration}
+
+                \[\int f(x) \cdot dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)\]
+
+                  \subsubsection*{Definite integrals}
 
                   \[\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)\]
 
 
                   \subsubsection*{Properties}
 
-                  \[\int^b_a f(x) \> dx = \int^c_a f(x) \> dx + \int^b_c f(x) \> dx\]
-
-                  \[\int^a_a f(x) \> dx = 0\]
-
-                  \[\int^b_a k \cdot f(x) \> dx = k \int^b_a f(x) \> dx\]
-
-                  \[\int^b_a f(x) \pm g(x) \> dx = \int^b_a f(x) \> dx \pm \int^b_a g(x) \> dx\]
-
-                  \[\int^b_a f(x) \> dx = - \int^a_b f(x) \> dx\]
+                  \begin{align*}
+                    \int^b_a f(x) \> dx &= \int^c_a f(x) \> dx + \int^b_c f(x) \> dx \\
+                    \int^a_a f(x) \> dx &= 0 \\
+                    \int^b_a k \cdot f(x) \> dx &= k \int^b_a f(x) \> dx \\
+                    \int^b_a f(x) \pm g(x) \> dx &= \int^b_a f(x) \> dx \pm \int^b_a g(x) \> dx \\
+                    \int^b_a f(x) \> dx &= - \int^a_b f(x) \> dx \\
+                  \end{align*}
 
                   \subsection*{Integration by substitution}
 
                   \[\int f(u) {\frac{du}{dx}} \cdot dx = \int f(u) \cdot du\]
 
-                  \noindent Note \(f(u)\) must be 1:1 \(\implies\) one \(x\) for each \(y\)
+                  \begin{warning}
+                    \(\boldsymbol{f(u)}\) must be 1:1 \(\boldsymbol{\implies}\) one \(\boldsymbol{x}\) for each \(\boldsymbol{y}\)
+                  \end{warning}
                   \begin{align*}\text{e.g. for } y&=\int(2x+1)\sqrt{x+4} \cdot dx\\
                     \text{let } u&=x+4\\
                     \implies& {\frac{du}{dx}} = 1\\
 
                   \subsection*{Partial fractions}
 
-                  \colorbox{cas}{On CAS:}\\
-                  \indent Action \(\rightarrow\) Transformation \(\rightarrow\)
-                  \texttt{expand/combine}\\
-                  \indent Interactive \(\rightarrow\) Transformation \(\rightarrow\)
-                  Expand \(\rightarrow\) Partial
+                  To factorise \(f(x) = \frac{\delta}{\alpha \cdot \beta}\):
+                  \begin{align*}
+                    \dfrac{\delta}{\alpha \cdot \beta \cdot \gamma} &= \dfrac{A}{\alpha} + \dfrac{B}{\beta} + \dfrac{C}{\gamma} \tag{1} \\
+                    \text{Multiply by } & (\alpha \cdot \beta \cdot \gamma) \text{:} \\
+                    \delta &= \beta\gamma A + \alpha\gamma B +\alpha\beta C \tag{2} \\
+                    \text{Substitute } x &= \{\alpha, \beta, \gamma\} \text{ into (2) to find denominators}
+                  \end{align*}
+
+                  \subsubsection*{Repeated linear factors}
+
+                  \[ \dfrac{p(x)}{(x-a)^n} = \dfrac{A_1}{(x-a)} + \dfrac{A_2}{(x-a)^2} + \dots + \dfrac{A_n}{(x-a)^n} \]
+
+                  \subsubsection*{Irreducible quadratic factors}
+
+                  \[ \text{e.g. } \dfrac{3x-4}{(2x-3)(x^2+5)} = \dfrac{A}{2x-3} + \dfrac{Bx+C}{x^2+5} \]
+
+                  \begin{cas}
+                    Action \(\rightarrow\) Transformation:\\
+                    \hspace{1em} \texttt{expand(..., x)}
+
+                    To reverse, use \texttt{combine(...)}
+                  \end{cas}
 
                   \subsection*{Graphing integrals on CAS}
 
-                  \colorbox{cas}{In main:} Interactive \(\rightarrow\) Calculation \(\rightarrow\)
-                  \(\int\) (\(\rightarrow\) Definite)\\
-                  Restrictions: \texttt{Define\ f(x)=..} then \texttt{f(x)\textbar{}x\textgreater{}..}
+                  \begin{cas}
+                    \textbf{In main:} Interactive \(\rightarrow\) Calculation \(\rightarrow\) \(\int\)\\
+                    Restrictions: \texttt{Define\ f(x)=..} then \texttt{f(x)\textbar{}x\textgreater{}..}
+                  \end{cas}
 
                   \subsection*{Applications of antidifferentiation}
 
 
                   Approximate as sum of infinitesimally-thick cylinders
 
-                  \subsubsection*{Rotation about \(x\)-axis}
+                  \subsubsection*{Rotation about \(\boldsymbol{x}\)-axis}
 
-                  \begin{align*}
-                    V &= \int^{x=b}_{x-a} \pi y^2 \> dx \\
-                    &= \pi \int^b_a (f(x))^2 \> dx
-                  \end{align*}
+                  \[ V = \pi\int^{x=b}_{x=a} f(x)^2 \> dx \]
 
-                  \subsubsection*{Rotation about \(y\)-axis}
+                  \subsubsection*{Rotation about \(\boldsymbol{y}\)-axis}
 
                   \begin{align*}
-                    V &= \int^{y=b}_{y=a} \pi x^2 \> dy \\
-                    &= \pi \int^b_a (f(y))^2 \> dy
+                    V &= \pi \int^{y=b}_{y=a} x^2 \> dy \\
+                    &= \pi \int^{y=b}_{y=a} (f(y))^2 \> dy
                   \end{align*}
 
-                  \subsubsection*{Regions not bound by \(y=0\)}
+                  \subsubsection*{Regions not bound by \(\boldsymbol{y=0}\)}
 
                   \[V = \pi \int^b_a f(x)^2 - g(x)^2 \> dx\]
                   \hfill where \(f(x) > g(x)\)
 
                   \[L = \int^b_a \sqrt{{\frac{dx}{dt}} + ({\frac{dy}{dt}})^2} \> dt \quad \text{(parametric)}\]
 
-                  \noindent \colorbox{cas}{On CAS:}\\
-                  \indent Evaluate formula,\\
-                  \indent or Interactive \(\rightarrow\) Calculation
-                  \(\rightarrow\) Line \(\rightarrow\) \texttt{arcLen}
+                  \begin{cas}
+                    \begin{enumerate}[label=\alph*), leftmargin=5mm]
+                      \item Evaluate formula
+                      \item Interactive \(\rightarrow\) Calculation \(\rightarrow\) Line \(\rightarrow\) \texttt{arcLen}
+                    \end{enumerate}
+                  \end{cas}
 
                   \subsection*{Rates}
 
 
                   \[\implies f(x+h) \approx f(x) + hf^\prime(x)\]
 
-              
+                  \include{calculus-rules}
+
     \section{Kinematics \& Mechanics}
 
       \subsection*{Constant acceleration}
index 5408f9ead6b38066451bad55ab97ad94bf715d32..d756a7f0e70696978718c8e8165cce8f12571084 100644 (file)
Binary files a/spec/statistics.pdf and b/spec/statistics.pdf differ
index 323ec2ac410e6e775239a53452756cc08d8f8a8d..fc4165c7a8631ca23a7d4db8382643e3fde52b0b 100644 (file)
     Note hypotheses are always expressed in terms of population parameters
   \end{warning}
 
-  \subsection*{Null hypothesis \(H_0\)}
+  \subsection*{Null hypothesis \(\textbf{H}_0\)}
 
   Sample drawn from population has same mean as control population, and any difference can be explained by sample variations.
 
-  \subsection*{Alternative hypothesis \(H_1\)}
+  \subsection*{Alternative hypothesis \(\textbf{H}_1\)}
 
   Amount of variation from control is significant, despite standard sample variations.
 
   \subsection*{\(p\)-value}
 
+  Probability of observing a value of the sample statistic as significant as the one observed, assuming null hypothesis is true.
 
+  For one-tail tests:
   \begin{align*}
-    p &= \Pr(\overline{X} \lessgtr \mu(H_1)) \\
-    &= 2 \cdot \Pr(\overline{X} <> \mu(H_1) | \mu = 8)
+    p\text{-value} &= \Pr\left( \> \overline{X} \lessgtr \mu(\textbf{H}_1) \> \given \> \mu = \mu(\textbf{H}_0)\> \right) \\
+    &= \Pr\left( Z \lessgtr \dfrac{\left( \mu(\textbf{H}_1) - \mu(\textbf{H}_0) \right) \cdot \sqrt{n} }{\operatorname{sd}(X)} \right) \\
+    &\text{then use \texttt{normCdf} with std. norm.}
   \end{align*}
 
-  Probability of observing a value of the sample statistic as significant as the one observed, assuming null hypothesis is true.
-
   \vspace{0.5em}
   \begin{tabularx}{23em}{|l|X|}
     \hline
     \rowcolor{cas}
     \(\boldsymbol{p}\) & \textbf{Conclusion} \\
     \hline
-    \(> 0.05\) & insufficient evidence against \(H_0\) \\
-    \(< 0.05\) (5\%) & good evidence against \(H_0\) \\
-    \(< 0.01\) (1\%) & strong evidence against \(H_0\) \\
-    \(< 0.001\) (0.1\%) & very strong evidence against \(H_0\) \\
+    \(> 0.05\) & insufficient evidence against \(\textbf{H}_0\) \\
+    \(< 0.05\) (5\%) & good evidence against \(\textbf{H}_0\) \\
+    \(< 0.01\) (1\%) & strong evidence against \(\textbf{H}_0\) \\
+    \(< 0.001\) (0.1\%) & very strong evidence against \(\textbf{H}_0\) \\
     \hline
   \end{tabularx}
 
-  \subsection*{Statistical significance}
+  \subsection*{Significance level \(\alpha\)}
 
-  Significance level is denoted by \(\alpha\).
+  The condition for rejecting the null hypothesis.
 
   \-\hspace{1em} If \(p<\alpha\), null hypothesis is \textbf{rejected} \\
   \-\hspace{1em} If \(p>\alpha\), null hypothesis is \textbf{accepted}
   Menu \(\rightarrow\) Statistics \(\rightarrow\) Calc \(\rightarrow\) Test. \\
   Select \textit{One-Sample Z-Test} and \textit{Variable}, then input:
     \begin{description}[nosep, style=multiline, labelindent=0.5cm, leftmargin=2cm, font=\normalfont]
-    \item[\(\mu\) cond:] same operator as \(H_1\)
+    \item[\(\mu\) cond:] same operator as \(\textbf{H}_1\)
     \item[\(\mu_0\):] expected sample mean (null hypothesis)
     \item[\(\sigma\):] standard deviation (null hypothesis)
     \item[\(\overline{x}\):] sample mean
   \end{cas}
 
   \subsection*{One-tail and two-tail tests}
+  
+  \[ p\text{-value (two-tail)} = 2 \times p\text{-value (one-tail)} \]
 
   \subsubsection*{One tail}
 
   \begin{itemize}
     \item \(\mu\) has changed in one direction
-    \item State ``\(H_1: \mu \lessgtr \) known population mean''
+    \item State ``\(\textbf{H}_1: \mu \lessgtr \) known population mean''
   \end{itemize}
 
   \subsubsection*{Two tail}
 
   \begin{itemize}
     \item Direction of \(\Delta \mu\) is ambiguous
-    \item State ``\(H_1: \mu \ne\) known population mean''
+    \item State ``\(\textbf{H}_1: \mu \ne\) known population mean''
   \end{itemize}
 
-  For two tail tests:
   \begin{align*}
     p\text{-value} &= \Pr(|\overline{X} - \mu| \ge |\overline{x}_0 - \mu|) \\
-    &= \left( |Z| \ge \left|\dfrac{\overline{x}_0 - \mu}{\sigma \div \sqrt{n}} \right| \right)
+    &= \left( |Z| \ge \left|\dfrac{\overline{x}_0 - \mu}{\sigma \div \sqrt{n}} \right| \right) \\
   \end{align*}
 
+  where
+  \begin{description}[nosep, labelindent=0.5cm]
+    \item [\(\mu\)] is the population mean under \(\textbf{H}_0\)
+    \item [\(\overline{x}_0\)] is the observed sample mean
+    \item [\(\sigma\)] is the population s.d.
+    \item [\(n\)] is the sample size
+  \end{description}
+
   \subsection*{Modulus notation for two tail}
 
   \(\Pr(|\overline{X} - \mu| \ge a) \implies\) ``the probability that the distance between \(\overline{\mu}\) and \(\mu\) is \(\ge a\)''
   \subsection*{Errors}
 
   \begin{description}[labelwidth=2.5cm, labelindent=0.5cm]
-    \item [Type I error] \(H_0\) is rejected when it is \textbf{true}
-    \item [Type II error] \(H_0\) is \textbf{not} rejected when it is \textbf{false}
+    \item [Type I error] \(\textbf{H}_0\) is rejected when it is \textbf{true}
+    \item [Type II error] \(\textbf{H}_0\) is \textbf{not} rejected when it is \textbf{false}
   \end{description}
 
+  \begin{tabularx}{\columnwidth}{|X|l|l|}
+    \rowcolor{cas}\hline
+    \cellcolor{white}&\multicolumn{2}{c|}{\textbf{Actual result}} \\
+    \hline
+    \cellcolor{cas}\(\boldsymbol{z}\)\textbf{-test} & \cellcolor{light-gray}\(\textbf{H}_0\) true & \cellcolor{light-gray}\(\textbf{H}_0\) false \\
+    \hline
+    \cellcolor{light-gray}Reject \(\textbf{H}_0\) & Type I error & Correct \\
+    \hline
+    \cellcolor{light-gray}Do not reject \(\textbf{H}_0\) & Correct& Type II error \\
+    \hline
+  \end{tabularx}
+
 % \subsection*{Using c.i. to find \(p\)}
 % need more here