render final notes for graphing & circ fn's, add local graphics
[notes.git] / methods / circ-functions.md
index f30ed7adc4874089ba307799e81c327921756838..e639e709de0772c90de4be0cc9ba261c25289b83 100644 (file)
@@ -1,12 +1,21 @@
+---
+geometry: margin=2cm
+columns: 2
+graphics: yes
+---
 # Circular functions
 
-## Radians and degrees
+<!-- ## Radians and degrees -->
 
-$$1 \thinspace \operatorname{rad}={{180 \operatorname{deg}}\over \pi}$$
+<!-- $$1 \thinspace \operatorname{rad}={{180 \operatorname{deg}}\over \pi}$$ -->
 
 ## Exact values
 
+\includegraphics[width=0.2\textwidth]{./graphics/exact-values-1.png}
+\includegraphics[width=0.2\textwidth]{./graphics/exact-values-2.png}
 
+<!-- ![diag](graphics/exact-values-1.png) -->
+<!-- ![diag](graphics/exact-values-2.png) -->
 
 ## $\sin$ and $\cos$ graphs
 
@@ -14,45 +23,41 @@ $$f(x)=a \sin(bx-c)+d$$
 $$f(x)=a \cos(bx-c)+d$$
 
 where
-$a$ is the $y$-dilation (amplitude)
-$b$ is the $x$-dilation (period)
-$c$ is the $x$-shift (phase)
-$d$ is the $y$-shift (equilibrium position)
+
+- $a$ is the $y$-dilation (amplitude)
+- $b$ is the $x$-dilation (period)
+- $c$ is the $x$-shift (phase)
+- $d$ is the $y$-shift (equilibrium position)
+
 
 Domain is $\mathbb{R}$
+
 Range is $[-b+c, b+c]$;
 
 Graph of $\cos(x)$ starts at $(0,1)$. Graph of $\sin(x)$ starts at $(0,0)$.
 
 **Mean / equilibrium:** line that the graph oscillates around ($y=d$)
 
-## Solving trig equations
-
-1. Solve domain for $n\theta$
-2. Find solutions for $n\theta$
-3. Divide solutions by $n$
-
-$\sin2\theta={\sqrt{3}\over2}, \quad \theta \in[0, 2\pi] \quad(\therefore 2\theta \in [0,4\pi])$
-$2\theta=\sin^{-1}{\sqrt{3} \over 2}$
-$2\theta={\pi\over 3}, {2\pi \over 3}, {7\pi \over 3}, {8\pi \over 3}$
-$\therefore \theta = {\pi \over 6}, {\pi \over 3}, {7 \pi \over 6}, {4\pi \over 3}$
-
 ### Amplitude
 
-Amplitude of $a$ means graph oscillates between $+a$ and $-a$ in $y$-axis
+Graph oscillates between $+a$ and $-a$ in $y$-axis
 
 $a=0$ produces straight line
-$a\lt0$ inverts the phase ($\sin$ becomes $\cos$, vice vera)
+
+$a < 0$ inverts the phase ($\sin$ becomes $\cos$, vice vera)
 
 ### Period
 
 Period $T$ is ${2 \pi}\over b$
+
 $b=0$ produces straight line
-$b\lt0$ inverts the phase
+
+$b<0$ inverts the phase
 
 ### Phase
 
 $c$ moves the graph left-right in the $x$ axis.
+
 If $c=T={{2\pi}\over b}$, the graph has no actual phase shift.
 
 ## Symmetry
@@ -75,15 +80,31 @@ $$\cos({\pi \over 2} - \theta)=\sin\theta$$
 $$\sin\theta=-\cos(\theta+{\pi \over 2})$$
 $$\cos\theta=\sin(\theta+{\pi \over 2})$$
 
-## $tan$ graph
+## $\tan$ graph
 
 $$y=a\tan(nx)$$
 
 where
-$a$ is $x$-dilation (period)
-$n$ is $y$-dilation ($\equiv$ amplitude)
-period $T$ is $\pi \over n$
-range is $R$
-roots at $x={k\pi \over n}$
-asymptotes at $x={{(2k+1)\pi}\over 2n},\quad k \in \mathbb{Z}$
+
+- $a$ is $x$-dilation (period)
+- $n$ is $y$-dilation ($\equiv$ amplitude)
+- period $T$ is $\pi \over n$
+- range is $R$
+- roots at $x={k\pi \over n}$
+- asymptotes at $x={{(2k+1)\pi}\over 2n},\quad k \in \mathbb{Z}$
+
 **Asymptotes should always have equations and arrow pointing up**
+
+## Solving trig equations
+
+1. Solve domain for $n\theta$
+2. Find solutions for $n\theta$
+3. Divide solutions by $n$
+
+$\sin2\theta={\sqrt{3}\over2}, \quad \theta \in[0, 2\pi] \quad(\therefore 2\theta \in [0,4\pi])$
+
+$2\theta=\sin^{-1}{\sqrt{3} \over 2}$
+
+$2\theta={\pi\over 3}, {2\pi \over 3}, {7\pi \over 3}, {8\pi \over 3}$
+
+$\therefore \theta = {\pi \over 6}, {\pi \over 3}, {7 \pi \over 6}, {4\pi \over 3}$