## Exact values
+
+
## $\sin$ and $\cos$ graphs
$$f(x)=a \sin(bx-c)+d$$
Range is $[-b+c, b+c]$;
Graph of $\cos(x)$ starts at $(0,1)$. Graph of $\sin(x)$ starts at $(0,0)$.
+
+**Mean / equilibrium:** line that the graph oscillates around ($y=d$)
+
+## Solving trig equations
+
+1. Solve domain for $n\theta$
+2. Find solutions for $n\theta$
+3. Divide solutions by $n$
+
+$\sin2\theta={\sqrt{3}\over2}, \quad \theta \in[0, 2\pi] \quad(\therefore 2\theta \in [0,4\pi])$
+$2\theta=\sin^{-1}{\sqrt{3} \over 2}$
+$2\theta={\pi\over 3}, {2\pi \over 3}, {7\pi \over 3}, {8\pi \over 3}$
+$\therefore \theta = {\pi \over 6}, {\pi \over 3}, {7 \pi \over 6}, {4\pi \over 3}$