perpendicular vector resolute
authorAndrew Lorimer <andrew@lorimer.id.au>
Tue, 12 Feb 2019 05:31:00 +0000 (16:31 +1100)
committerAndrew Lorimer <andrew@lorimer.id.au>
Tue, 12 Feb 2019 05:31:00 +0000 (16:31 +1100)
spec/vectors.md
index db6598373fc53fe2f011284825156c99d00539e8..ccdec2fa8861f27d6ac91738ffe54f6b626da232 100644 (file)
@@ -139,7 +139,8 @@ Vector resolute of $\boldsymbol{a}$ in direction of $\boldsymbol{b}$ is magnitud
 
 $$\boldsymbol{u}={{\boldsymbol{a}\cdot\boldsymbol{b}}\over |\boldsymbol{b}|^2}\boldsymbol{b}=\left({\boldsymbol{a}\cdot{\boldsymbol{b} \over |\boldsymbol{b}|}}\right)\left({\boldsymbol{b} \over |\boldsymbol{b}|}\right)=(\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}$$
 
-Scalar resolute of $\vec{a}$ on $\vec{b} = |\vec{u}| = \vec{a} \cdot \hat{\vec{b}}$
+Scalar resolute of $\vec{a}$ on $\vec{b} = |\vec{u}| = \vec{a} \cdot \hat{\vec{b}}$ (results in a scalar)  
+Vector resolute of $\vec{a}$ perpendicular to $b$ is equal to $\vec{a} - \vec{u}$ where $\vec{u}$ is vector projection of $\vec{a}$ on $\vec{b}$
 
 ## Vector proofs