Andrew's git
/
notes.git
/ diff
summary
|
log
|
commit
| diff |
tree
commit
grep
author
committer
pickaxe
?
re
logs etc
author
Andrew Lorimer
<andrew@lorimer.id.au>
Sat, 18 Aug 2018 06:52:23 +0000
(16:52 +1000)
committer
Andrew Lorimer
<andrew@lorimer.id.au>
Sat, 18 Aug 2018 06:52:23 +0000
(16:52 +1000)
spec/calculus.md
patch
|
blob
|
history
raw
|
patch
|
inline
| side by side (parent:
08a48a5
)
diff --git
a/spec/calculus.md
b/spec/calculus.md
index 4c3331860356d8310bfdf56c7fb075fbc790b0dc..19f97b5aba2cf5b39bcd3ac26dba6f801a4bdc49 100644
(file)
--- a/
spec/calculus.md
+++ b/
spec/calculus.md
@@
-93,7
+93,7
@@
where $u$ and $v$ are functions of $x$
$$\lim_{h \rightarrow 0} {{e^h-1} \over h}=1$$
$$\lim_{h \rightarrow 0} {{e^h-1} \over h}=1$$
-## Chain rule
+## Chain rule
for $(f\circ g)$
$$(f \circ g)^\prime = (f^\prime \circ g) \cdot g^\prime$$
$$(f \circ g)^\prime = (f^\prime \circ g) \cdot g^\prime$$
@@
-130,3
+130,16
@@
If $f(x)={u(x) \over v(x)}$, then $f^\prime(x)={{v(x)u^\prime(x)-u(x)v^\prime(x)
If $y={u(x) \over v(x)}$, then derivative ${dy \over dx} = {{v{du \over dx} - u{dv \over dx}} \over v^2}$
If $y={u(x) \over v(x)}$, then derivative ${dy \over dx} = {{v{du \over dx} - u{dv \over dx}} \over v^2}$
+## Solving $e^x$
+
+| $f(x)$ | $f^\prime(x)$ |
+| ------ | ------------- |
+| $\sin x$ | $\cos x$ |
+| $\sin ax$ | $a\cos ax$ |
+| $\cos x$ | $-\sin x$ |
+| $\cos ax$ | $-a \sin ax$ |
+| $e^x$ | $e^x$ |
+| $e^{ax}$ | $ae^{ax}$ |
+| $\log_e x$ | $1 \over x$ |
+| $\log_e {ax}$ | $1 \over x$ |
+