-- electron is only stable in orbit if $mvr = n{h \over 2\pi}$ where $n \in \mathbb{Z}$
-- rearranging this, $2\pi r = n{h \over mv}$ (circumference)
-- if $2\pi r \ne n{h \over mv}$, interference occurs, standing wave cannot be established
+- e- is only stable if $mvr = n{h \over 2\pi}$ where $n \in \mathbb{Z}$
+- rearranging this, $2\pi r = n{h \over mv} = n \lambda$ (circumference)
+- if $2\pi r \ne n{h \over mv}$, no standing wave
+- if e- = x-ray diff patterns, $E_{\text{e-}}={\rho^2 \over 2m}={({h \over \lambda})^2 \div 2m}$
+- calculating $h$: $\lambda = {h \over \rho}$