| ${u \over v}$ | ${{v{du \over dx} - u{dv \over dx}} \over v^2}$ |
| $uv$ | $u{dv \over dx} + v{du \over dx}$ |
| $f \circ g$ | ${dy \over du} \cdot {du \over dx}$ |
| ${u \over v}$ | ${{v{du \over dx} - u{dv \over dx}} \over v^2}$ |
| $uv$ | $u{dv \over dx} + v{du \over dx}$ |
| $f \circ g$ | ${dy \over du} \cdot {du \over dx}$ |
| $k$ (constant) | $kx + c$ |
| $x^n$ | ${1 \over {n+1}}x^{n+1} + c$ |
| $a x^{-n}$ | $a \cdot \log_e x + c$ |
| $k$ (constant) | $kx + c$ |
| $x^n$ | ${1 \over {n+1}}x^{n+1} + c$ |
| $a x^{-n}$ | $a \cdot \log_e x + c$ |
| | no |
| - | -- |
| $v=u+at$ | $s$ |
| $s=ut + {1 \over 2} at^2$ | $v$ |
| $v^2 = u^2 + 2as$ | $t$ |
| $s= {1 \over 2}(u+v)t$ | $a$ |
| | no |
| - | -- |
| $v=u+at$ | $s$ |
| $s=ut + {1 \over 2} at^2$ | $v$ |
| $v^2 = u^2 + 2as$ | $t$ |
| $s= {1 \over 2}(u+v)t$ | $a$ |