Andrew's git
/
notes.git
/ diff
summary
|
log
|
commit
| diff |
tree
commit
grep
author
committer
pickaxe
?
re
refinements to calculus notes
author
Andrew Lorimer
<andrew@lorimer.id.au>
Sun, 26 Aug 2018 08:40:07 +0000
(18:40 +1000)
committer
Andrew Lorimer
<andrew@lorimer.id.au>
Sun, 26 Aug 2018 08:40:07 +0000
(18:40 +1000)
spec/calculus.md
patch
|
blob
|
history
raw
|
patch
|
inline
| side by side (parent:
7090965
)
diff --git
a/spec/calculus.md
b/spec/calculus.md
index f98aee74b7997a51b29729e723b9f89cd1f2240a..08cfe8f7a206ba4b2ff1a1ff4d818314215c8e39 100644
(file)
--- a/
spec/calculus.md
+++ b/
spec/calculus.md
@@
-144,6
+144,7
@@
$\log_b y^{x^n} = x^n \log_b y$
$b^{m+n}=b^m \cdot b^n$
$(b^m)^n=b^{m \cdot n}$
$(b \cdot c)^n = b^n \cdot c^n$
$b^{m+n}=b^m \cdot b^n$
$(b^m)^n=b^{m \cdot n}$
$(b \cdot c)^n = b^n \cdot c^n$
+${a^m \div a^n} = {a^{m-n}}$
### $e$ as a logarithm
### $e$ as a logarithm
@@
-182,7
+183,7
@@
$$\int f(x) dx = F(x) + c$$
- area enclosed by curves
- $+c$ should be shown on each step without $\int$
- area enclosed by curves
- $+c$ should be shown on each step without $\int$
-$$\int xn = {x^{n+1} \over n+1} + c$$
+$$\int x
^
n = {x^{n+1} \over n+1} + c$$
### Integral laws
### Integral laws
@@
-191,10
+192,11
@@
$\int k f(x) dx = k \int f(x) dx$
| $f(x)$ | $\int f(x) \cdot dx$ |
| ------------------------------- | ---------------------------- |
| $f(x)$ | $\int f(x) \cdot dx$ |
| ------------------------------- | ---------------------------- |
-| $k$ (constant) | $k
c
+ c$ |
+| $k$ (constant) | $k
x
+ c$ |
| $x^n$ | ${1 \over {n+1}}x^{n+1} + c$ |
| $x^n$ | ${1 \over {n+1}}x^{n+1} + c$ |
-| $1 \over x$ | $\log_e x + c$ |
-| $e^kx$ | ${1 \over k} e^{kx} + c$ |
+| $a \cdot {1 \over x}$ | $a \cdot \log_e x + c$ |
+| $e^{kx}$ | ${1 \over k} e^{kx} + c$ |
+| $e^k$ | $e^kx + c$ |
| $\sin kx$ | $-{1 \over k} \cos (kx) + c$ |
| $\cos kx$ | ${1 \over k} \sin (kx) + c$ |
| ${f^\prime (x)} \over {f(x)}$ | $\log_e f(x) + c$ |
| $\sin kx$ | $-{1 \over k} \cos (kx) + c$ |
| $\cos kx$ | ${1 \over k} \sin (kx) + c$ |
| ${f^\prime (x)} \over {f(x)}$ | $\log_e f(x) + c$ |