methods transformations - f(x)
authorAndrew Lorimer <andrew@lorimer.id.au>
Sun, 3 Feb 2019 23:40:47 +0000 (10:40 +1100)
committerAndrew Lorimer <andrew@lorimer.id.au>
Sun, 3 Feb 2019 23:40:47 +0000 (10:40 +1100)
methods/transformations.md
index 9a0b47b2a5ec870cc8e890ea0e4b32570e035bf4..ce58a1082ff7c611c7a53335bc2a55332e952505 100644 (file)
@@ -1,5 +1,7 @@
 # Transformation
 
+**Order of operations:** DRT - Dilations, Reflections, Translations
+
 ## $f(x) = x^n$ to $f(x)=a(x-h)^n+K$##
 
 - $|a|$ is the dilation factor of $|a|$ units parallel to $y$-axis or from $x$-axis
@@ -24,4 +26,14 @@ For the graph of $y = f(x)$, there are two pairs of equivalent processes:
 2. - Dilating from $y$-axis: $(x, y) \rightarrow (ax, y)$
    - Replacing $x$ with $x \over a$ to obtain $y = f({x \over a})$
 
-For graph of $y={1 \over x}$, horizontal & vertical dilations are equivalent (symmetrical). If $y={a \over x}$, graph is contracted rather than dilated.
\ No newline at end of file
+For graph of $y={1 \over x}$, horizontal & vertical dilations are equivalent (symmetrical). If $y={a \over x}$, graph is contracted rather than dilated.
+
+## Transformations from $f(x)$ to $y=Af[n(x+c)]+b$#
+
+Applies to exponential, log, trig, power, polynomial functions.  
+Functions must be written in form $y=Af[n(x+c)] + b$
+
+$A$ - dilation by factor $A$ from $x$-axis (if $A<0$, reflection across $y$-axis)  
+$n$ - dilation by factor $1 \over n$ from $y$-axis (if $n<0$, reflection across $x$-axis)  
+$c$ - translation from $y$-axis ($x$-shift)  
+$b$ - translation from $x$-axis ($y$-shift)
\ No newline at end of file