### Dividing complex numbers
-$${{z_1} \over {z_2}} = {{z_1\ {z_2}^{-1}}} = {{z_1 \overline{z_2}} \over {{|z_2|}^2}} \quad \text{multiplicative inverse}$$
-
-(using multiplicative inverse)
+$${{z_1} \over {z_2}} = {{z_1\ {z_2}^{-1}}} = {{z_1 \overline{z_2}} \over {{|z_2|}^2}} \quad \text{(multiplicative inverse)}$$
In practice, rationalise denominator:
-${z_1 \over z_2} = {{(a+bi)(c-di)} \over {c^2+d^2}}$
+
+$${z_1 \over z_2} = {{(a+bi)(c-di)} \over {c^2+d^2}}$$
## Argand planes