+ \subsection{Discrete random distributions}
+
+ Any experiment or activity involving chance will have a probability associated with each result or \textit{outcome}. If the outcomes have a reference to \textbf{discrete numeric values} (outcomes that can be counted), and the result is unknown, then the activity is a \textit{discrete random probability distribution}.
+
+ \subsubsection{Discrete probability distributions}
+
+ If an activity has outcomes whose probability values are all positive and less than one ($\implies 0 \le p(x) \le 1$), and for which the sum of all outcome probabilities is unity ($\implies \sum p(x) = 1$), then it is called a \textit{probability distribution} or \textit{probability mass} function.
+
+ \begin{itemize}
+ \item \textbf{Probability distribution graph} - a series of points on a cartesian axis representing results of outcomes. $\Pr(X=x)$ is on $y$-axis, $x$ is on $x$ axis.
+ \item \textbf{Mean $\mu$} - measure of central tendency. \textit{Balance point} or \textit{expected value} of a distribution. Centre of a symmetrical distribution.
+ \item \textbf{Variance $\sigma^2$} - measure of spread of data around the mean. Not the same magnitude as the original data. Represented by $\sigma^2=\operatorname{Var}(x) = \sum (x=\mu)^2 \times p(x) = \sum (x-\mu)^2 \times \Pr(X=x)$. Alternatively: $\sigma^2 = \operatorname{Var}(X) = \sum x^2 \times p(x) - \mu^2$
+ \item \textbf{Standard deviation $\sigma$} - measure of spread in the original magnitude of the data. Found by taking square root of the variance: $\sigma =\operatorname{sd}(X)=\sqrt{\operatorname{Var}(X)}$
+ \end{itemize}
+