[spec] further notes on sample means and consecutive sampling
authorAndrew Lorimer <andrew@lorimer.id.au>
Sat, 24 Aug 2019 04:34:13 +0000 (14:34 +1000)
committerAndrew Lorimer <andrew@lorimer.id.au>
Sat, 24 Aug 2019 04:34:13 +0000 (14:34 +1000)
spec/statistics.pdf
spec/statistics.tex
index 56f9c8326ad3338832ae49568898f1c343618558..9f5622dac1bf0227761d302c031f05abbae46a6b 100644 (file)
Binary files a/spec/statistics.pdf and b/spec/statistics.pdf differ
index 0b6f4ce416680b27d9f2e5c8b673b6c19a035e10..22286369d271a7b93841b3a03820d33cbe42ef4a 100644 (file)
@@ -85,6 +85,8 @@
 
   Sample mean is distributed with mean \(\mu\) and sd \(\frac{\sigma}{\sqrt{n}}\) (approaches these values for increasing sample size \(n\)).
 
 
   Sample mean is distributed with mean \(\mu\) and sd \(\frac{\sigma}{\sqrt{n}}\) (approaches these values for increasing sample size \(n\)).
 
+  For a new distribution with mean of \(n\) trials, \(\operatorname{E}(X^\prime) = \operatorname{E}(X), \quad \operatorname{sd}(X^\prime) = \dfrac{\operatorname{sd}(X)}{\sqrt{n}}\)
+
   \begin{tcolorbox}[colframe=cas!75!black, title=On CAS]
   
     \begin{itemize}
   \begin{tcolorbox}[colframe=cas!75!black, title=On CAS]
   
     \begin{itemize}