+- $h$ - translation of $h$ units parallel to $x$-axis or from $y$-axis
+
+## Translations
+
+For $y = f(x)$, these processes are equivalent:
+
+- applying the translation $(x, y) \rightarrow (x + h, y + k)$ to the graph of $y = f$(x)$
+- replacing $x$ with $x − h$ and $y$ with $y − k$ to obtain $y − k = f (x − h)$
+
+## Dilations
+
+For the graph of $y = f(x)$, there are two pairs of equivalent processes:
+
+1. - Dilating from $x$-axis: $(x, y) \rightarrow (x, by)$
+ - Replacing $y$ with $y \over b$ to obtain $y = b f(x)$
+
+2. - Dilating from $y$-axis: $(x, y) \rightarrow (ax, y)$
+ - Replacing $x$ with $x \over a$ to obtain $y = f({x \over a})$
+
+For graph of $y={1 \over x}$, horizontal & vertical dilations are equivalent (symmetrical). If $y={a \over x}$, graph is contracted rather than dilated.
\ No newline at end of file