Andrew's git
/
notes.git
/ diff
summary
|
log
|
commit
| diff |
tree
commit
grep
author
committer
pickaxe
?
re
clarify chain/product/quotient rules
author
Andrew Lorimer
<andrew@lorimer.id.au>
Thu, 16 Aug 2018 10:57:25 +0000
(20:57 +1000)
committer
Andrew Lorimer
<andrew@lorimer.id.au>
Thu, 16 Aug 2018 10:57:25 +0000
(20:57 +1000)
spec/calculus.md
patch
|
blob
|
history
raw
|
patch
|
inline
| side by side (parent:
e8484a6
)
diff --git
a/spec/calculus.md
b/spec/calculus.md
index c0056c467954b463e026340ab459cb8434913e96..4c3331860356d8310bfdf56c7fb075fbc790b0dc 100644
(file)
--- a/
spec/calculus.md
+++ b/
spec/calculus.md
@@
-70,12
+70,12
@@
Given point $P(a, b)$ and function $f(x)$, the gradient is $f^\prime(a)$
## Derivatives of $x^n$
## Derivatives of $x^n$
-For $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(x)=x^n, x \in \mathbb{N}$
-
-Derivative is $f^\prime(x) = nx^{n-1}$
+$${d(ax^n) \over dx}=anx^{n-1}$$
If $x=$ constant, derivative is $0$
If $x=$ constant, derivative is $0$
+If $y=ax^n$, derivative is $a\times nx^{n-1}$
+
If $f(x)={1 \over x}=x^{-1}, \quad f^\prime(x)=-1x^{-2}={-1 \over x^2}$
If $f(x)=^5\sqrt{x}=x^{1 \over 5}, \quad f^\prime(x)={1 \over 5}x^{-4/5}={1 \over 5 \times ^5\sqrt{x^4}}$
If $f(x)={1 \over x}=x^{-1}, \quad f^\prime(x)=-1x^{-2}={-1 \over x^2}$
If $f(x)=^5\sqrt{x}=x^{1 \over 5}, \quad f^\prime(x)={1 \over 5}x^{-4/5}={1 \over 5 \times ^5\sqrt{x^4}}$
@@
-84,15
+84,22
@@
If $f(x)=(x-b)^2, \quad f^\prime(x)=2(x-b)$
$$f^\prime(x)=\lim_{h \rightarrow 0}{{f(x+h)-f(x)} \over h}$$
$$f^\prime(x)=\lim_{h \rightarrow 0}{{f(x+h)-f(x)} \over h}$$
+## Derivatives of $u \pm v$
+
+$${dy \over dx}={du \over dx} \pm {dv \over dx}$$
+where $u$ and $v$ are functions of $x$
+
## Euler's number as a limit
$$\lim_{h \rightarrow 0} {{e^h-1} \over h}=1$$
## Chain rule
## Euler's number as a limit
$$\lim_{h \rightarrow 0} {{e^h-1} \over h}=1$$
## Chain rule
+$$(f \circ g)^\prime = (f^\prime \circ g) \cdot g^\prime$$
+
Leibniz notation:
Leibniz notation:
-$${dy \over dx} = {dy \over du} \
times
{du \over dx}$$
+$${dy \over dx} = {dy \over du} \
cdot
{du \over dx}$$
Function notation:
Function notation:
@@
-109,15
+116,15
@@
${dy \over du} = 7u^6$
$7u^6 \times$
$7u^6 \times$
-## Product rule
-
-If $f(x)=u(x) \times v(x)$, then $f^\prime (x) = u(x) \times v^\prime(x) + v(x)\times u^\prime(x)$
+## Product rule for $y=uv$
-
If $y=uv$, then derivative ${dy \over dx} = u{dv \over dx} + v{du \over dx}
$
+
$${dy \over dx} = u{dv \over dx} + v{du \over dx}$
$
Surds can be left on denomintaors.
Surds can be left on denomintaors.
-## Quotient rule
+## Quotient rule for $y={u \over v}$
+
+$${dy \over dx} = {{v{du \over dx} - u{dv \over dx}} \over v^2}$$
If $f(x)={u(x) \over v(x)}$, then $f^\prime(x)={{v(x)u^\prime(x)-u(x)v^\prime(x)} \over [v(x)]^2}$
If $f(x)={u(x) \over v(x)}$, then $f^\prime(x)={{v(x)u^\prime(x)-u(x)v^\prime(x)} \over [v(x)]^2}$