Andrew's git
/
notes.git
/ diff
summary
|
log
|
commit
| diff |
tree
commit
grep
author
committer
pickaxe
?
re
[spec] EOL formatting for complex.md
author
Andrew Lorimer
<andrew@lorimer.id.au>
Tue, 5 Mar 2019 01:59:43 +0000
(12:59 +1100)
committer
Andrew Lorimer
<andrew@lorimer.id.au>
Tue, 5 Mar 2019 01:59:43 +0000
(12:59 +1100)
spec/complex.md
patch
|
blob
|
history
raw
|
patch
|
inline
| side by side (parent:
77db891
)
diff --git
a/spec/complex.md
b/spec/complex.md
index e72225e3b7bbf2d5a170930723ed6a9fa50e03c3..91066042af574e64cee549401a65d09c097449a3 100755
(executable)
--- a/
spec/complex.md
+++ b/
spec/complex.md
@@
-146,7
+146,7
@@
If $a+bi$ is a solution to $P(z)=0$, with $a, b \in \mathbb{R}$, then the conjug
- $\theta=\operatorname{arg}(z)$ (on CAS: `arg(a+bi)`)
- **principal argument** is $\operatorname{Arg}(z) \in (-\pi, \pi]$ (note capital $\operatorname{Arg}$)
- $\theta=\operatorname{arg}(z)$ (on CAS: `arg(a+bi)`)
- **principal argument** is $\operatorname{Arg}(z) \in (-\pi, \pi]$ (note capital $\operatorname{Arg}$)
-Note each complex number has multiple polar representations:
+Note each complex number has multiple polar representations:
$z=r \operatorname{cis} \theta = r \operatorname{cis} (\theta+2 n\pi$) where $n$ is integer number of revolutions
### Conjugate in polar form
$z=r \operatorname{cis} \theta = r \operatorname{cis} (\theta+2 n\pi$) where $n$ is integer number of revolutions
### Conjugate in polar form