- If these conditions are met, then it is a Binomial Random Variable. This variable is said to have a \textit{binomial probability distribution}.
-
- \begin{itemize}
- \item \(n\) is the number of trials
- \item There are two possible outcomes: \(S\) or \(F\)
- \item \(\Pr(\text{success}) = p\)
- \item \(\Pr(\text{failure}) = 1-p = q\)
- \item Shorthand notation: \(X \sim \operatorname{Bi}(n,p)\)
- \end{itemize}
-
- \colorbox{cas}{On CAS:} Main \(\rightarrow\) Interactive \(\rightarrow\) Distribution \(\rightarrow\) \verb;binomialPDf; \\
- Input \verb;x; (no. of successes), \verb;numtrial; (no. of trials), \verb;pos; (probbability of success)
-
- \subsection{Applications of binomial distributions}
-
- \[ \Pr(X \ge a) = 1 - \Pr(X < a) \]
-
- \subsection{Expected value of a binomial distribution}
+ \subsection*{\colorbox{cas}{Solve on CAS}}
+
+ Main \(\rightarrow\) Interactive \(\rightarrow\) Distribution \(\rightarrow\) \verb;binomialPDf;