Andrew's git
/
notes.git
/ diff
summary
|
log
|
commit
| diff |
tree
commit
grep
author
committer
pickaxe
?
re
features of asymptotes on tan graphs
author
Andrew Lorimer
<andrew@lorimer.id.au>
Mon, 30 Jul 2018 01:15:48 +0000
(11:15 +1000)
committer
Andrew Lorimer
<andrew@lorimer.id.au>
Mon, 30 Jul 2018 01:15:48 +0000
(11:15 +1000)
methods/circ-functions.md
patch
|
blob
|
history
raw
|
patch
|
inline
| side by side (parent:
5e2fc0c
)
diff --git
a/methods/circ-functions.md
b/methods/circ-functions.md
index 3bbe1c238fc68a6543734b9d89b464b7438565e5..f30ed7adc4874089ba307799e81c327921756838 100644
(file)
--- a/
methods/circ-functions.md
+++ b/
methods/circ-functions.md
@@
-24,7
+24,6
@@
Range is $[-b+c, b+c]$;
Graph of $\cos(x)$ starts at $(0,1)$. Graph of $\sin(x)$ starts at $(0,0)$.
Graph of $\cos(x)$ starts at $(0,1)$. Graph of $\sin(x)$ starts at $(0,0)$.
-<<<<<<< HEAD
**Mean / equilibrium:** line that the graph oscillates around ($y=d$)
## Solving trig equations
**Mean / equilibrium:** line that the graph oscillates around ($y=d$)
## Solving trig equations
@@
-37,7
+36,7
@@
$\sin2\theta={\sqrt{3}\over2}, \quad \theta \in[0, 2\pi] \quad(\therefore 2\thet
$2\theta=\sin^{-1}{\sqrt{3} \over 2}$
$2\theta={\pi\over 3}, {2\pi \over 3}, {7\pi \over 3}, {8\pi \over 3}$
$\therefore \theta = {\pi \over 6}, {\pi \over 3}, {7 \pi \over 6}, {4\pi \over 3}$
$2\theta=\sin^{-1}{\sqrt{3} \over 2}$
$2\theta={\pi\over 3}, {2\pi \over 3}, {7\pi \over 3}, {8\pi \over 3}$
$\therefore \theta = {\pi \over 6}, {\pi \over 3}, {7 \pi \over 6}, {4\pi \over 3}$
-=======
+
### Amplitude
Amplitude of $a$ means graph oscillates between $+a$ and $-a$ in $y$-axis
### Amplitude
Amplitude of $a$ means graph oscillates between $+a$ and $-a$ in $y$-axis
@@
-86,5
+85,5
@@
$n$ is $y$-dilation ($\equiv$ amplitude)
period $T$ is $\pi \over n$
range is $R$
roots at $x={k\pi \over n}$
period $T$ is $\pi \over n$
range is $R$
roots at $x={k\pi \over n}$
-asymptotes at $x={{(2k+1)\pi}\over 2},\quad k \in \mathbb{Z}$
->>>>>>> 924c0548b3e7564d4015e879c56a46a5606807fe
+asymptotes at $x={{(2k+1)\pi}\over 2
n
},\quad k \in \mathbb{Z}$
+**Asymptotes should always have equations and arrow pointing up**