tables: yes
author: Andrew Lorimer
classoption: twocolumn
+header-includes:
+- \usepackage{harpoon}
+- \usepackage{amsmath}
+- \pagenumbering{gobble}
---
- **vector:** a directed line segment
- arrow indicates direction
- length indicates magnitude
-- notated as $\vec{a}, \widetilde{A}$
+- notated as $\vec{a}, \widetilde{A}, \overrightharp{a}$
- column notation: $\begin{bmatrix}
x \\ y
\end{bmatrix}$
Vectors may describe a position relative to $O$.
-For a point $A$, the position vector is $\boldsymbol{OA}$
+For a point $A$, the position vector is $\overrightharp{OA}$
+
+\vfill\eject
## Linear combinations of non-parallel vectors
If two non-zero vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ are not parallel, then:
-$$m\boldsymbol{a} + n\boldsymbol{b} = p \boldsymbol{a} + q \boldsymbol{b}\quad\text{implies}\quad m = p, \> n = q$$
+$$m\boldsymbol{a} + n\boldsymbol{b} = p \boldsymbol{a} + q \boldsymbol{b}\quad \therefore \quad m = p, \> n = q$$
+
+![](graphics/parallelogram-vectors.jpg){#id .class width=20%}
+![](graphics/vector-subtraction.jpg){#id .class width=10%}
## Column vector notation
3. $\boldsymbol{a \cdot (b + c)}=\boldsymbol{a \cdot b + a \cdot c}$
For parallel vectors $\boldsymbol{a}$ and $\boldsymbol{b}$:
-$\boldsymbol{a \cdot b}=\{
- \begin{array}{ll}
- |\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction} \\
- -|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions} \\
- \end{array}$
+$$\boldsymbol{a \cdot b}=\begin{cases}
+|\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction}\\
+-|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions}
+\end{cases}$$
## Geometric scalar products