-# Curve 0 of 1, 1000 points
+# Curve 0 of 1, 100 points
# Curve title: "sgn(x)*(abs(x)**(1./3))"
# x y type
-2.0000000e+00 -1.2599210e+00 i
--1.9959960e+00 -1.2590797e+00 i
--1.9919920e+00 -1.2582372e+00 i
--1.9879880e+00 -1.2573936e+00 i
--1.9839840e+00 -1.2565489e+00 i
--1.9799800e+00 -1.2557030e+00 i
--1.9759760e+00 -1.2548560e+00 i
--1.9719720e+00 -1.2540078e+00 i
--1.9679680e+00 -1.2531585e+00 i
--1.9639640e+00 -1.2523080e+00 i
--1.9599600e+00 -1.2514564e+00 i
--1.9559560e+00 -1.2506036e+00 i
--1.9519520e+00 -1.2497497e+00 i
--1.9479479e+00 -1.2488946e+00 i
--1.9439439e+00 -1.2480383e+00 i
--1.9399399e+00 -1.2471808e+00 i
--1.9359359e+00 -1.2463222e+00 i
--1.9319319e+00 -1.2454624e+00 i
--1.9279279e+00 -1.2446013e+00 i
--1.9239239e+00 -1.2437391e+00 i
--1.9199199e+00 -1.2428757e+00 i
--1.9159159e+00 -1.2420111e+00 i
--1.9119119e+00 -1.2411453e+00 i
--1.9079079e+00 -1.2402783e+00 i
--1.9039039e+00 -1.2394100e+00 i
--1.8998999e+00 -1.2385406e+00 i
--1.8958959e+00 -1.2376699e+00 i
--1.8918919e+00 -1.2367980e+00 i
--1.8878879e+00 -1.2359249e+00 i
--1.8838839e+00 -1.2350505e+00 i
--1.8798799e+00 -1.2341749e+00 i
--1.8758759e+00 -1.2332980e+00 i
--1.8718719e+00 -1.2324199e+00 i
--1.8678679e+00 -1.2315406e+00 i
--1.8638639e+00 -1.2306599e+00 i
--1.8598599e+00 -1.2297781e+00 i
--1.8558559e+00 -1.2288949e+00 i
--1.8518519e+00 -1.2280105e+00 i
--1.8478478e+00 -1.2271248e+00 i
--1.8438438e+00 -1.2262378e+00 i
--1.8398398e+00 -1.2253496e+00 i
--1.8358358e+00 -1.2244600e+00 i
--1.8318318e+00 -1.2235692e+00 i
--1.8278278e+00 -1.2226771e+00 i
--1.8238238e+00 -1.2217836e+00 i
--1.8198198e+00 -1.2208889e+00 i
--1.8158158e+00 -1.2199928e+00 i
--1.8118118e+00 -1.2190954e+00 i
--1.8078078e+00 -1.2181967e+00 i
--1.8038038e+00 -1.2172967e+00 i
--1.7997998e+00 -1.2163953e+00 i
--1.7957958e+00 -1.2154926e+00 i
--1.7917918e+00 -1.2145885e+00 i
--1.7877878e+00 -1.2136831e+00 i
--1.7837838e+00 -1.2127764e+00 i
--1.7797798e+00 -1.2118683e+00 i
--1.7757758e+00 -1.2109588e+00 i
--1.7717718e+00 -1.2100480e+00 i
--1.7677678e+00 -1.2091358e+00 i
--1.7637638e+00 -1.2082222e+00 i
--1.7597598e+00 -1.2073072e+00 i
--1.7557558e+00 -1.2063908e+00 i
--1.7517518e+00 -1.2054731e+00 i
--1.7477477e+00 -1.2045539e+00 i
--1.7437437e+00 -1.2036334e+00 i
--1.7397397e+00 -1.2027114e+00 i
--1.7357357e+00 -1.2017880e+00 i
--1.7317317e+00 -1.2008632e+00 i
--1.7277277e+00 -1.1999370e+00 i
--1.7237237e+00 -1.1990093e+00 i
--1.7197197e+00 -1.1980802e+00 i
--1.7157157e+00 -1.1971497e+00 i
--1.7117117e+00 -1.1962177e+00 i
--1.7077077e+00 -1.1952842e+00 i
--1.7037037e+00 -1.1943493e+00 i
--1.6996997e+00 -1.1934129e+00 i
--1.6956957e+00 -1.1924751e+00 i
--1.6916917e+00 -1.1915357e+00 i
--1.6876877e+00 -1.1905949e+00 i
--1.6836837e+00 -1.1896526e+00 i
--1.6796797e+00 -1.1887088e+00 i
--1.6756757e+00 -1.1877635e+00 i
--1.6716717e+00 -1.1868167e+00 i
--1.6676677e+00 -1.1858684e+00 i
--1.6636637e+00 -1.1849186e+00 i
--1.6596597e+00 -1.1839672e+00 i
--1.6556557e+00 -1.1830143e+00 i
--1.6516517e+00 -1.1820599e+00 i
--1.6476476e+00 -1.1811039e+00 i
--1.6436436e+00 -1.1801464e+00 i
--1.6396396e+00 -1.1791873e+00 i
--1.6356356e+00 -1.1782267e+00 i
--1.6316316e+00 -1.1772645e+00 i
--1.6276276e+00 -1.1763007e+00 i
--1.6236236e+00 -1.1753353e+00 i
--1.6196196e+00 -1.1743684e+00 i
--1.6156156e+00 -1.1733998e+00 i
--1.6116116e+00 -1.1724297e+00 i
--1.6076076e+00 -1.1714579e+00 i
--1.6036036e+00 -1.1704845e+00 i
--1.5995996e+00 -1.1695095e+00 i
--1.5955956e+00 -1.1685329e+00 i
--1.5915916e+00 -1.1675546e+00 i
--1.5875876e+00 -1.1665747e+00 i
--1.5835836e+00 -1.1655932e+00 i
--1.5795796e+00 -1.1646100e+00 i
--1.5755756e+00 -1.1636251e+00 i
--1.5715716e+00 -1.1626386e+00 i
--1.5675676e+00 -1.1616503e+00 i
--1.5635636e+00 -1.1606604e+00 i
--1.5595596e+00 -1.1596688e+00 i
+-1.9595960e+00 -1.2513789e+00 i
+-1.9191919e+00 -1.2427186e+00 i
+-1.8787879e+00 -1.2339359e+00 i
+-1.8383838e+00 -1.2250263e+00 i
+-1.7979798e+00 -1.2159851e+00 i
+-1.7575758e+00 -1.2068075e+00 i
+-1.7171717e+00 -1.1974882e+00 i
+-1.6767677e+00 -1.1880215e+00 i
+-1.6363636e+00 -1.1784015e+00 i
+-1.5959596e+00 -1.1686217e+00 i
-1.5555556e+00 -1.1586755e+00 i
--1.5515516e+00 -1.1576805e+00 i
--1.5475475e+00 -1.1566838e+00 i
--1.5435435e+00 -1.1556854e+00 i
--1.5395395e+00 -1.1546852e+00 i
--1.5355355e+00 -1.1536833e+00 i
--1.5315315e+00 -1.1526797e+00 i
--1.5275275e+00 -1.1516743e+00 i
--1.5235235e+00 -1.1506672e+00 i
--1.5195195e+00 -1.1496583e+00 i
--1.5155155e+00 -1.1486476e+00 i
--1.5115115e+00 -1.1476351e+00 i
--1.5075075e+00 -1.1466208e+00 i
--1.5035035e+00 -1.1456048e+00 i
--1.4994995e+00 -1.1445869e+00 i
--1.4954955e+00 -1.1435672e+00 i
--1.4914915e+00 -1.1425457e+00 i
--1.4874875e+00 -1.1415224e+00 i
--1.4834835e+00 -1.1404972e+00 i
--1.4794795e+00 -1.1394702e+00 i
--1.4754755e+00 -1.1384414e+00 i
--1.4714715e+00 -1.1374106e+00 i
--1.4674675e+00 -1.1363780e+00 i
--1.4634635e+00 -1.1353435e+00 i
--1.4594595e+00 -1.1343072e+00 i
--1.4554555e+00 -1.1332689e+00 i
--1.4514515e+00 -1.1322287e+00 i
--1.4474474e+00 -1.1311866e+00 i
--1.4434434e+00 -1.1301426e+00 i
--1.4394394e+00 -1.1290967e+00 i
--1.4354354e+00 -1.1280488e+00 i
--1.4314314e+00 -1.1269990e+00 i
--1.4274274e+00 -1.1259472e+00 i
--1.4234234e+00 -1.1248934e+00 i
--1.4194194e+00 -1.1238377e+00 i
--1.4154154e+00 -1.1227799e+00 i
--1.4114114e+00 -1.1217202e+00 i
--1.4074074e+00 -1.1206585e+00 i
--1.4034034e+00 -1.1195947e+00 i
--1.3993994e+00 -1.1185289e+00 i
--1.3953954e+00 -1.1174611e+00 i
--1.3913914e+00 -1.1163913e+00 i
--1.3873874e+00 -1.1153194e+00 i
--1.3833834e+00 -1.1142454e+00 i
--1.3793794e+00 -1.1131694e+00 i
--1.3753754e+00 -1.1120912e+00 i
--1.3713714e+00 -1.1110110e+00 i
--1.3673674e+00 -1.1099287e+00 i
--1.3633634e+00 -1.1088442e+00 i
--1.3593594e+00 -1.1077577e+00 i
--1.3553554e+00 -1.1066690e+00 i
--1.3513514e+00 -1.1055781e+00 i
--1.3473473e+00 -1.1044851e+00 i
--1.3433433e+00 -1.1033899e+00 i
--1.3393393e+00 -1.1022926e+00 i
--1.3353353e+00 -1.1011930e+00 i
--1.3313313e+00 -1.1000913e+00 i
--1.3273273e+00 -1.0989873e+00 i
--1.3233233e+00 -1.0978811e+00 i
--1.3193193e+00 -1.0967727e+00 i
--1.3153153e+00 -1.0956621e+00 i
--1.3113113e+00 -1.0945492e+00 i
--1.3073073e+00 -1.0934340e+00 i
--1.3033033e+00 -1.0923165e+00 i
--1.2992993e+00 -1.0911968e+00 i
--1.2952953e+00 -1.0900747e+00 i
--1.2912913e+00 -1.0889503e+00 i
--1.2872873e+00 -1.0878236e+00 i
--1.2832833e+00 -1.0866946e+00 i
--1.2792793e+00 -1.0855632e+00 i
--1.2752753e+00 -1.0844295e+00 i
--1.2712713e+00 -1.0832934e+00 i
--1.2672673e+00 -1.0821548e+00 i
--1.2632633e+00 -1.0810139e+00 i
--1.2592593e+00 -1.0798706e+00 i
--1.2552553e+00 -1.0787248e+00 i
--1.2512513e+00 -1.0775767e+00 i
--1.2472472e+00 -1.0764260e+00 i
--1.2432432e+00 -1.0752729e+00 i
--1.2392392e+00 -1.0741173e+00 i
--1.2352352e+00 -1.0729592e+00 i
--1.2312312e+00 -1.0717987e+00 i
--1.2272272e+00 -1.0706356e+00 i
--1.2232232e+00 -1.0694699e+00 i
--1.2192192e+00 -1.0683017e+00 i
--1.2152152e+00 -1.0671310e+00 i
--1.2112112e+00 -1.0659577e+00 i
--1.2072072e+00 -1.0647818e+00 i
--1.2032032e+00 -1.0636033e+00 i
--1.1991992e+00 -1.0624221e+00 i
--1.1951952e+00 -1.0612384e+00 i
--1.1911912e+00 -1.0600520e+00 i
--1.1871872e+00 -1.0588629e+00 i
--1.1831832e+00 -1.0576712e+00 i
--1.1791792e+00 -1.0564767e+00 i
--1.1751752e+00 -1.0552796e+00 i
--1.1711712e+00 -1.0540797e+00 i
--1.1671672e+00 -1.0528771e+00 i
--1.1631632e+00 -1.0516718e+00 i
--1.1591592e+00 -1.0504636e+00 i
--1.1551552e+00 -1.0492527e+00 i
--1.1511512e+00 -1.0480390e+00 i
--1.1471471e+00 -1.0468225e+00 i
--1.1431431e+00 -1.0456031e+00 i
--1.1391391e+00 -1.0443809e+00 i
--1.1351351e+00 -1.0431558e+00 i
--1.1311311e+00 -1.0419279e+00 i
--1.1271271e+00 -1.0406970e+00 i
--1.1231231e+00 -1.0394632e+00 i
--1.1191191e+00 -1.0382265e+00 i
--1.1151151e+00 -1.0369868e+00 i
+-1.5151515e+00 -1.1485556e+00 i
+-1.4747475e+00 -1.1382541e+00 i
+-1.4343434e+00 -1.1277627e+00 i
+-1.3939394e+00 -1.1170723e+00 i
+-1.3535354e+00 -1.1061734e+00 i
+-1.3131313e+00 -1.0950553e+00 i
+-1.2727273e+00 -1.0837068e+00 i
+-1.2323232e+00 -1.0721154e+00 i
+-1.1919192e+00 -1.0602679e+00 i
+-1.1515152e+00 -1.0481495e+00 i
-1.1111111e+00 -1.0357442e+00 i
--1.1071071e+00 -1.0344985e+00 i
--1.1031031e+00 -1.0332499e+00 i
--1.0990991e+00 -1.0319982e+00 i
--1.0950951e+00 -1.0307435e+00 i
--1.0910911e+00 -1.0294857e+00 i
--1.0870871e+00 -1.0282249e+00 i
--1.0830831e+00 -1.0269609e+00 i
--1.0790791e+00 -1.0256939e+00 i
--1.0750751e+00 -1.0244237e+00 i
--1.0710711e+00 -1.0231503e+00 i
--1.0670671e+00 -1.0218737e+00 i
--1.0630631e+00 -1.0205940e+00 i
--1.0590591e+00 -1.0193110e+00 i
--1.0550551e+00 -1.0180248e+00 i
--1.0510511e+00 -1.0167354e+00 i
--1.0470470e+00 -1.0154426e+00 i
--1.0430430e+00 -1.0141466e+00 i
--1.0390390e+00 -1.0128473e+00 i
--1.0350350e+00 -1.0115446e+00 i
--1.0310310e+00 -1.0102385e+00 i
--1.0270270e+00 -1.0089290e+00 i
--1.0230230e+00 -1.0076162e+00 i
--1.0190190e+00 -1.0062999e+00 i
--1.0150150e+00 -1.0049802e+00 i
--1.0110110e+00 -1.0036569e+00 i
--1.0070070e+00 -1.0023302e+00 i
--1.0030030e+00 -1.0010000e+00 i
--9.9899900e-01 -9.9966622e-01 i
--9.9499499e-01 -9.9832887e-01 i
--9.9099099e-01 -9.9698793e-01 i
--9.8698699e-01 -9.9564338e-01 i
--9.8298298e-01 -9.9429518e-01 i
--9.7897898e-01 -9.9294331e-01 i
--9.7497497e-01 -9.9158776e-01 i
--9.7097097e-01 -9.9022849e-01 i
--9.6696697e-01 -9.8886547e-01 i
--9.6296296e-01 -9.8749869e-01 i
--9.5895896e-01 -9.8612811e-01 i
--9.5495495e-01 -9.8475372e-01 i
--9.5095095e-01 -9.8337547e-01 i
--9.4694695e-01 -9.8199336e-01 i
--9.4294294e-01 -9.8060734e-01 i
--9.3893894e-01 -9.7921739e-01 i
--9.3493493e-01 -9.7782348e-01 i
--9.3093093e-01 -9.7642559e-01 i
--9.2692693e-01 -9.7502369e-01 i
--9.2292292e-01 -9.7361774e-01 i
--9.1891892e-01 -9.7220772e-01 i
--9.1491491e-01 -9.7079360e-01 i
--9.1091091e-01 -9.6937534e-01 i
--9.0690691e-01 -9.6795292e-01 i
--9.0290290e-01 -9.6652632e-01 i
--8.9889890e-01 -9.6509548e-01 i
--8.9489489e-01 -9.6366039e-01 i
--8.9089089e-01 -9.6222102e-01 i
--8.8688689e-01 -9.6077732e-01 i
--8.8288288e-01 -9.5932928e-01 i
--8.7887888e-01 -9.5787685e-01 i
--8.7487487e-01 -9.5642000e-01 i
--8.7087087e-01 -9.5495870e-01 i
--8.6686687e-01 -9.5349291e-01 i
--8.6286286e-01 -9.5202260e-01 i
--8.5885886e-01 -9.5054774e-01 i
--8.5485485e-01 -9.4906828e-01 i
--8.5085085e-01 -9.4758420e-01 i
--8.4684685e-01 -9.4609546e-01 i
--8.4284284e-01 -9.4460202e-01 i
--8.3883884e-01 -9.4310383e-01 i
--8.3483483e-01 -9.4160088e-01 i
--8.3083083e-01 -9.4009311e-01 i
--8.2682683e-01 -9.3858048e-01 i
--8.2282282e-01 -9.3706297e-01 i
--8.1881882e-01 -9.3554053e-01 i
--8.1481481e-01 -9.3401311e-01 i
--8.1081081e-01 -9.3248068e-01 i
--8.0680681e-01 -9.3094320e-01 i
--8.0280280e-01 -9.2940062e-01 i
--7.9879880e-01 -9.2785291e-01 i
--7.9479479e-01 -9.2630002e-01 i
--7.9079079e-01 -9.2474190e-01 i
--7.8678679e-01 -9.2317851e-01 i
--7.8278278e-01 -9.2160981e-01 i
--7.7877878e-01 -9.2003575e-01 i
--7.7477477e-01 -9.1845629e-01 i
--7.7077077e-01 -9.1687137e-01 i
--7.6676677e-01 -9.1528096e-01 i
--7.6276276e-01 -9.1368500e-01 i
--7.5875876e-01 -9.1208344e-01 i
--7.5475475e-01 -9.1047625e-01 i
--7.5075075e-01 -9.0886335e-01 i
--7.4674675e-01 -9.0724471e-01 i
--7.4274274e-01 -9.0562028e-01 i
--7.3873874e-01 -9.0399000e-01 i
--7.3473473e-01 -9.0235381e-01 i
--7.3073073e-01 -9.0071167e-01 i
--7.2672673e-01 -8.9906352e-01 i
--7.2272272e-01 -8.9740931e-01 i
--7.1871872e-01 -8.9574897e-01 i
--7.1471471e-01 -8.9408246e-01 i
--7.1071071e-01 -8.9240971e-01 i
--7.0670671e-01 -8.9073067e-01 i
--7.0270270e-01 -8.8904527e-01 i
--6.9869870e-01 -8.8735346e-01 i
--6.9469469e-01 -8.8565517e-01 i
--6.9069069e-01 -8.8395034e-01 i
--6.8668669e-01 -8.8223891e-01 i
--6.8268268e-01 -8.8052082e-01 i
--6.7867868e-01 -8.7879599e-01 i
--6.7467467e-01 -8.7706437e-01 i
--6.7067067e-01 -8.7532588e-01 i
+-1.0707071e+00 -1.0230344e+00 i
+-1.0303030e+00 -1.0100007e+00 i
+-9.8989899e-01 -9.9662160e-01 i
+-9.4949495e-01 -9.8287334e-01 i
+-9.0909091e-01 -9.6872931e-01 i
+-8.6868687e-01 -9.5415973e-01 i
+-8.2828283e-01 -9.3913109e-01 i
+-7.8787879e-01 -9.2360541e-01 i
+-7.4747475e-01 -9.0753944e-01 i
+-7.0707071e-01 -8.9088357e-01 i
-6.6666667e-01 -8.7358046e-01 i
--6.6266266e-01 -8.7182804e-01 i
--6.5865866e-01 -8.7006855e-01 i
--6.5465465e-01 -8.6830190e-01 i
--6.5065065e-01 -8.6652804e-01 i
--6.4664665e-01 -8.6474689e-01 i
--6.4264264e-01 -8.6295837e-01 i
--6.3863864e-01 -8.6116241e-01 i
--6.3463463e-01 -8.5935892e-01 i
--6.3063063e-01 -8.5754783e-01 i
--6.2662663e-01 -8.5572906e-01 i
--6.2262262e-01 -8.5390253e-01 i
--6.1861862e-01 -8.5206814e-01 i
--6.1461461e-01 -8.5022583e-01 i
--6.1061061e-01 -8.4837549e-01 i
--6.0660661e-01 -8.4651705e-01 i
--6.0260260e-01 -8.4465042e-01 i
--5.9859860e-01 -8.4277549e-01 i
--5.9459459e-01 -8.4089219e-01 i
--5.9059059e-01 -8.3900041e-01 i
--5.8658659e-01 -8.3710007e-01 i
--5.8258258e-01 -8.3519105e-01 i
--5.7857858e-01 -8.3327327e-01 i
--5.7457457e-01 -8.3134662e-01 i
--5.7057057e-01 -8.2941100e-01 i
--5.6656657e-01 -8.2746630e-01 i
--5.6256256e-01 -8.2551242e-01 i
--5.5855856e-01 -8.2354924e-01 i
--5.5455455e-01 -8.2157666e-01 i
--5.5055055e-01 -8.1959456e-01 i
--5.4654655e-01 -8.1760283e-01 i
--5.4254254e-01 -8.1560134e-01 i
--5.3853854e-01 -8.1358999e-01 i
--5.3453453e-01 -8.1156864e-01 i
--5.3053053e-01 -8.0953717e-01 i
--5.2652653e-01 -8.0749545e-01 i
--5.2252252e-01 -8.0544336e-01 i
--5.1851852e-01 -8.0338075e-01 i
--5.1451451e-01 -8.0130750e-01 i
--5.1051051e-01 -7.9922347e-01 i
--5.0650651e-01 -7.9712851e-01 i
--5.0250250e-01 -7.9502248e-01 i
--4.9849850e-01 -7.9290523e-01 i
--4.9449449e-01 -7.9077662e-01 i
--4.9049049e-01 -7.8863648e-01 i
--4.8648649e-01 -7.8648467e-01 i
--4.8248248e-01 -7.8432101e-01 i
--4.7847848e-01 -7.8214535e-01 i
--4.7447447e-01 -7.7995752e-01 i
--4.7047047e-01 -7.7775735e-01 i
--4.6646647e-01 -7.7554466e-01 i
--4.6246246e-01 -7.7331926e-01 i
--4.5845846e-01 -7.7108099e-01 i
--4.5445445e-01 -7.6882965e-01 i
--4.5045045e-01 -7.6656504e-01 i
--4.4644645e-01 -7.6428697e-01 i
--4.4244244e-01 -7.6199524e-01 i
--4.3843844e-01 -7.5968965e-01 i
--4.3443443e-01 -7.5736997e-01 i
--4.3043043e-01 -7.5503599e-01 i
--4.2642643e-01 -7.5268750e-01 i
--4.2242242e-01 -7.5032426e-01 i
--4.1841842e-01 -7.4794604e-01 i
--4.1441441e-01 -7.4555259e-01 i
--4.1041041e-01 -7.4314368e-01 i
--4.0640641e-01 -7.4071905e-01 i
--4.0240240e-01 -7.3827844e-01 i
--3.9839840e-01 -7.3582159e-01 i
--3.9439439e-01 -7.3334822e-01 i
--3.9039039e-01 -7.3085806e-01 i
--3.8638639e-01 -7.2835081e-01 i
--3.8238238e-01 -7.2582617e-01 i
--3.7837838e-01 -7.2328385e-01 i
--3.7437437e-01 -7.2072354e-01 i
--3.7037037e-01 -7.1814490e-01 i
--3.6636637e-01 -7.1554760e-01 i
--3.6236236e-01 -7.1293132e-01 i
--3.5835836e-01 -7.1029569e-01 i
--3.5435435e-01 -7.0764035e-01 i
--3.5035035e-01 -7.0496494e-01 i
--3.4634635e-01 -7.0226906e-01 i
--3.4234234e-01 -6.9955233e-01 i
--3.3833834e-01 -6.9681433e-01 i
--3.3433433e-01 -6.9405464e-01 i
--3.3033033e-01 -6.9127282e-01 i
--3.2632633e-01 -6.8846844e-01 i
--3.2232232e-01 -6.8564102e-01 i
--3.1831832e-01 -6.8279009e-01 i
--3.1431431e-01 -6.7991515e-01 i
--3.1031031e-01 -6.7701569e-01 i
--3.0630631e-01 -6.7409118e-01 i
--3.0230230e-01 -6.7114107e-01 i
--2.9829830e-01 -6.6816480e-01 i
--2.9429429e-01 -6.6516177e-01 i
--2.9029029e-01 -6.6213138e-01 i
--2.8628629e-01 -6.5907299e-01 i
--2.8228228e-01 -6.5598595e-01 i
--2.7827828e-01 -6.5286958e-01 i
--2.7427427e-01 -6.4972318e-01 i
--2.7027027e-01 -6.4654599e-01 i
--2.6626627e-01 -6.4333728e-01 i
--2.6226226e-01 -6.4009623e-01 i
--2.5825826e-01 -6.3682202e-01 i
--2.5425425e-01 -6.3351379e-01 i
--2.5025025e-01 -6.3017065e-01 i
--2.4624625e-01 -6.2679166e-01 i
--2.4224224e-01 -6.2337583e-01 i
--2.3823824e-01 -6.1992215e-01 i
--2.3423423e-01 -6.1642956e-01 i
--2.3023023e-01 -6.1289693e-01 i
--2.2622623e-01 -6.0932311e-01 i
+-6.2626263e-01 -8.5556334e-01 i
+-5.8585859e-01 -8.3675362e-01 i
+-5.4545455e-01 -8.1705794e-01 i
+-5.0505051e-01 -7.9636397e-01 i
+-4.6464646e-01 -7.7453470e-01 i
+-4.2424242e-01 -7.5140030e-01 i
+-3.8383838e-01 -7.2674625e-01 i
+-3.4343434e-01 -7.0029535e-01 i
+-3.0303030e-01 -6.7167939e-01 i
+-2.6262626e-01 -6.4039223e-01 i
-2.2222222e-01 -6.0570686e-01 i
--2.1821822e-01 -6.0204691e-01 i
--2.1421421e-01 -5.9834192e-01 i
--2.1021021e-01 -5.9459046e-01 i
--2.0620621e-01 -5.9079105e-01 i
--2.0220220e-01 -5.8694214e-01 i
--1.9819820e-01 -5.8304208e-01 i
--1.9419419e-01 -5.7908913e-01 i
--1.9019019e-01 -5.7508147e-01 i
--1.8618619e-01 -5.7101715e-01 i
--1.8218218e-01 -5.6689414e-01 i
--1.7817818e-01 -5.6271027e-01 i
--1.7417417e-01 -5.5846323e-01 i
--1.7017017e-01 -5.5415060e-01 i
--1.6616617e-01 -5.4976978e-01 i
--1.6216216e-01 -5.4531801e-01 i
--1.5815816e-01 -5.4079234e-01 i
--1.5415415e-01 -5.3618963e-01 i
--1.5015015e-01 -5.3150651e-01 i
--1.4614615e-01 -5.2673938e-01 i
--1.4214214e-01 -5.2188436e-01 i
--1.3813814e-01 -5.1693730e-01 i
--1.3413413e-01 -5.1189368e-01 i
--1.3013013e-01 -5.0674867e-01 i
--1.2612613e-01 -5.0149701e-01 i
--1.2212212e-01 -4.9613300e-01 i
--1.1811812e-01 -4.9065042e-01 i
--1.1411411e-01 -4.8504249e-01 i
--1.1011011e-01 -4.7930181e-01 i
--1.0610611e-01 -4.7342021e-01 i
--1.0210210e-01 -4.6738872e-01 i
--9.8098098e-02 -4.6119741e-01 i
--9.4094094e-02 -4.5483526e-01 i
--9.0090090e-02 -4.4828995e-01 i
--8.6086086e-02 -4.4154773e-01 i
--8.2082082e-02 -4.3459306e-01 i
--7.8078078e-02 -4.2740839e-01 i
--7.4074074e-02 -4.1997368e-01 i
--7.0070070e-02 -4.1226600e-01 i
--6.6066066e-02 -4.0425880e-01 i
--6.2062062e-02 -3.9592118e-01 i
--5.8058058e-02 -3.8721678e-01 i
--5.4054054e-02 -3.7810239e-01 i
--5.0050050e-02 -3.6852603e-01 i
--4.6046046e-02 -3.5842430e-01 i
--4.2042042e-02 -3.4771861e-01 i
--3.8038038e-02 -3.3630968e-01 i
--3.4034034e-02 -3.2406924e-01 i
--3.0030030e-02 -3.1082689e-01 i
--2.6026026e-02 -2.9634842e-01 i
--2.2022022e-02 -2.8029740e-01 i
--1.8018018e-02 -2.6216156e-01 i
--1.4014014e-02 -2.4109462e-01 i
--1.0010010e-02 -2.1551533e-01 i
--6.0060060e-03 -1.8177267e-01 i
--2.0020020e-03 -1.2603413e-01 i
-2.0020020e-03 1.2603413e-01 i
-6.0060060e-03 1.8177267e-01 i
-1.0010010e-02 2.1551533e-01 i
-1.4014014e-02 2.4109462e-01 i
-1.8018018e-02 2.6216156e-01 i
-2.2022022e-02 2.8029740e-01 i
-2.6026026e-02 2.9634842e-01 i
-3.0030030e-02 3.1082689e-01 i
-3.4034034e-02 3.2406924e-01 i
-3.8038038e-02 3.3630968e-01 i
-4.2042042e-02 3.4771861e-01 i
-4.6046046e-02 3.5842430e-01 i
-5.0050050e-02 3.6852603e-01 i
-5.4054054e-02 3.7810239e-01 i
-5.8058058e-02 3.8721678e-01 i
-6.2062062e-02 3.9592118e-01 i
-6.6066066e-02 4.0425880e-01 i
-7.0070070e-02 4.1226600e-01 i
-7.4074074e-02 4.1997368e-01 i
-7.8078078e-02 4.2740839e-01 i
-8.2082082e-02 4.3459306e-01 i
-8.6086086e-02 4.4154773e-01 i
-9.0090090e-02 4.4828995e-01 i
-9.4094094e-02 4.5483526e-01 i
-9.8098098e-02 4.6119741e-01 i
-1.0210210e-01 4.6738872e-01 i
-1.0610611e-01 4.7342021e-01 i
-1.1011011e-01 4.7930181e-01 i
-1.1411411e-01 4.8504249e-01 i
-1.1811812e-01 4.9065042e-01 i
-1.2212212e-01 4.9613300e-01 i
-1.2612613e-01 5.0149701e-01 i
-1.3013013e-01 5.0674867e-01 i
-1.3413413e-01 5.1189368e-01 i
-1.3813814e-01 5.1693730e-01 i
-1.4214214e-01 5.2188436e-01 i
-1.4614615e-01 5.2673938e-01 i
-1.5015015e-01 5.3150651e-01 i
-1.5415415e-01 5.3618963e-01 i
-1.5815816e-01 5.4079234e-01 i
-1.6216216e-01 5.4531801e-01 i
-1.6616617e-01 5.4976978e-01 i
-1.7017017e-01 5.5415060e-01 i
-1.7417417e-01 5.5846323e-01 i
-1.7817818e-01 5.6271027e-01 i
-1.8218218e-01 5.6689414e-01 i
-1.8618619e-01 5.7101715e-01 i
-1.9019019e-01 5.7508147e-01 i
-1.9419419e-01 5.7908913e-01 i
-1.9819820e-01 5.8304208e-01 i
-2.0220220e-01 5.8694214e-01 i
-2.0620621e-01 5.9079105e-01 i
-2.1021021e-01 5.9459046e-01 i
-2.1421421e-01 5.9834192e-01 i
-2.1821822e-01 6.0204691e-01 i
+-1.8181818e-01 -5.6651633e-01 i
+-1.4141414e-01 -5.2099187e-01 i
+-1.0101010e-01 -4.6571648e-01 i
+-6.0606061e-02 -3.9280049e-01 i
+-2.0202020e-02 -2.7235265e-01 i
+2.0202020e-02 2.7235265e-01 i
+6.0606061e-02 3.9280049e-01 i
+1.0101010e-01 4.6571648e-01 i
+1.4141414e-01 5.2099187e-01 i
+1.8181818e-01 5.6651633e-01 i
2.2222222e-01 6.0570686e-01 i
-2.2622623e-01 6.0932311e-01 i
-2.3023023e-01 6.1289693e-01 i
-2.3423423e-01 6.1642956e-01 i
-2.3823824e-01 6.1992215e-01 i
-2.4224224e-01 6.2337583e-01 i
-2.4624625e-01 6.2679166e-01 i
-2.5025025e-01 6.3017065e-01 i
-2.5425425e-01 6.3351379e-01 i
-2.5825826e-01 6.3682202e-01 i
-2.6226226e-01 6.4009623e-01 i
-2.6626627e-01 6.4333728e-01 i
-2.7027027e-01 6.4654599e-01 i
-2.7427427e-01 6.4972318e-01 i
-2.7827828e-01 6.5286958e-01 i
-2.8228228e-01 6.5598595e-01 i
-2.8628629e-01 6.5907299e-01 i
-2.9029029e-01 6.6213138e-01 i
-2.9429429e-01 6.6516177e-01 i
-2.9829830e-01 6.6816480e-01 i
-3.0230230e-01 6.7114107e-01 i
-3.0630631e-01 6.7409118e-01 i
-3.1031031e-01 6.7701569e-01 i
-3.1431431e-01 6.7991515e-01 i
-3.1831832e-01 6.8279009e-01 i
-3.2232232e-01 6.8564102e-01 i
-3.2632633e-01 6.8846844e-01 i
-3.3033033e-01 6.9127282e-01 i
-3.3433433e-01 6.9405464e-01 i
-3.3833834e-01 6.9681433e-01 i
-3.4234234e-01 6.9955233e-01 i
-3.4634635e-01 7.0226906e-01 i
-3.5035035e-01 7.0496494e-01 i
-3.5435435e-01 7.0764035e-01 i
-3.5835836e-01 7.1029569e-01 i
-3.6236236e-01 7.1293132e-01 i
-3.6636637e-01 7.1554760e-01 i
-3.7037037e-01 7.1814490e-01 i
-3.7437437e-01 7.2072354e-01 i
-3.7837838e-01 7.2328385e-01 i
-3.8238238e-01 7.2582617e-01 i
-3.8638639e-01 7.2835081e-01 i
-3.9039039e-01 7.3085806e-01 i
-3.9439439e-01 7.3334822e-01 i
-3.9839840e-01 7.3582159e-01 i
-4.0240240e-01 7.3827844e-01 i
-4.0640641e-01 7.4071905e-01 i
-4.1041041e-01 7.4314368e-01 i
-4.1441441e-01 7.4555259e-01 i
-4.1841842e-01 7.4794604e-01 i
-4.2242242e-01 7.5032426e-01 i
-4.2642643e-01 7.5268750e-01 i
-4.3043043e-01 7.5503599e-01 i
-4.3443443e-01 7.5736997e-01 i
-4.3843844e-01 7.5968965e-01 i
-4.4244244e-01 7.6199524e-01 i
-4.4644645e-01 7.6428697e-01 i
-4.5045045e-01 7.6656504e-01 i
-4.5445445e-01 7.6882965e-01 i
-4.5845846e-01 7.7108099e-01 i
-4.6246246e-01 7.7331926e-01 i
-4.6646647e-01 7.7554466e-01 i
-4.7047047e-01 7.7775735e-01 i
-4.7447447e-01 7.7995752e-01 i
-4.7847848e-01 7.8214535e-01 i
-4.8248248e-01 7.8432101e-01 i
-4.8648649e-01 7.8648467e-01 i
-4.9049049e-01 7.8863648e-01 i
-4.9449449e-01 7.9077662e-01 i
-4.9849850e-01 7.9290523e-01 i
-5.0250250e-01 7.9502248e-01 i
-5.0650651e-01 7.9712851e-01 i
-5.1051051e-01 7.9922347e-01 i
-5.1451451e-01 8.0130750e-01 i
-5.1851852e-01 8.0338075e-01 i
-5.2252252e-01 8.0544336e-01 i
-5.2652653e-01 8.0749545e-01 i
-5.3053053e-01 8.0953717e-01 i
-5.3453453e-01 8.1156864e-01 i
-5.3853854e-01 8.1358999e-01 i
-5.4254254e-01 8.1560134e-01 i
-5.4654655e-01 8.1760283e-01 i
-5.5055055e-01 8.1959456e-01 i
-5.5455455e-01 8.2157666e-01 i
-5.5855856e-01 8.2354924e-01 i
-5.6256256e-01 8.2551242e-01 i
-5.6656657e-01 8.2746630e-01 i
-5.7057057e-01 8.2941100e-01 i
-5.7457457e-01 8.3134662e-01 i
-5.7857858e-01 8.3327327e-01 i
-5.8258258e-01 8.3519105e-01 i
-5.8658659e-01 8.3710007e-01 i
-5.9059059e-01 8.3900041e-01 i
-5.9459459e-01 8.4089219e-01 i
-5.9859860e-01 8.4277549e-01 i
-6.0260260e-01 8.4465042e-01 i
-6.0660661e-01 8.4651705e-01 i
-6.1061061e-01 8.4837549e-01 i
-6.1461461e-01 8.5022583e-01 i
-6.1861862e-01 8.5206814e-01 i
-6.2262262e-01 8.5390253e-01 i
-6.2662663e-01 8.5572906e-01 i
-6.3063063e-01 8.5754783e-01 i
-6.3463463e-01 8.5935892e-01 i
-6.3863864e-01 8.6116241e-01 i
-6.4264264e-01 8.6295837e-01 i
-6.4664665e-01 8.6474689e-01 i
-6.5065065e-01 8.6652804e-01 i
-6.5465465e-01 8.6830190e-01 i
-6.5865866e-01 8.7006855e-01 i
-6.6266266e-01 8.7182804e-01 i
+2.6262626e-01 6.4039223e-01 i
+3.0303030e-01 6.7167939e-01 i
+3.4343434e-01 7.0029535e-01 i
+3.8383838e-01 7.2674625e-01 i
+4.2424242e-01 7.5140030e-01 i
+4.6464646e-01 7.7453470e-01 i
+5.0505051e-01 7.9636397e-01 i
+5.4545455e-01 8.1705794e-01 i
+5.8585859e-01 8.3675362e-01 i
+6.2626263e-01 8.5556334e-01 i
6.6666667e-01 8.7358046e-01 i
-6.7067067e-01 8.7532588e-01 i
-6.7467467e-01 8.7706437e-01 i
-6.7867868e-01 8.7879599e-01 i
-6.8268268e-01 8.8052082e-01 i
-6.8668669e-01 8.8223891e-01 i
-6.9069069e-01 8.8395034e-01 i
-6.9469469e-01 8.8565517e-01 i
-6.9869870e-01 8.8735346e-01 i
-7.0270270e-01 8.8904527e-01 i
-7.0670671e-01 8.9073067e-01 i
-7.1071071e-01 8.9240971e-01 i
-7.1471471e-01 8.9408246e-01 i
-7.1871872e-01 8.9574897e-01 i
-7.2272272e-01 8.9740931e-01 i
-7.2672673e-01 8.9906352e-01 i
-7.3073073e-01 9.0071167e-01 i
-7.3473473e-01 9.0235381e-01 i
-7.3873874e-01 9.0399000e-01 i
-7.4274274e-01 9.0562028e-01 i
-7.4674675e-01 9.0724471e-01 i
-7.5075075e-01 9.0886335e-01 i
-7.5475475e-01 9.1047625e-01 i
-7.5875876e-01 9.1208344e-01 i
-7.6276276e-01 9.1368500e-01 i
-7.6676677e-01 9.1528096e-01 i
-7.7077077e-01 9.1687137e-01 i
-7.7477477e-01 9.1845629e-01 i
-7.7877878e-01 9.2003575e-01 i
-7.8278278e-01 9.2160981e-01 i
-7.8678679e-01 9.2317851e-01 i
-7.9079079e-01 9.2474190e-01 i
-7.9479479e-01 9.2630002e-01 i
-7.9879880e-01 9.2785291e-01 i
-8.0280280e-01 9.2940062e-01 i
-8.0680681e-01 9.3094320e-01 i
-8.1081081e-01 9.3248068e-01 i
-8.1481481e-01 9.3401311e-01 i
-8.1881882e-01 9.3554053e-01 i
-8.2282282e-01 9.3706297e-01 i
-8.2682683e-01 9.3858048e-01 i
-8.3083083e-01 9.4009311e-01 i
-8.3483483e-01 9.4160088e-01 i
-8.3883884e-01 9.4310383e-01 i
-8.4284284e-01 9.4460202e-01 i
-8.4684685e-01 9.4609546e-01 i
-8.5085085e-01 9.4758420e-01 i
-8.5485485e-01 9.4906828e-01 i
-8.5885886e-01 9.5054774e-01 i
-8.6286286e-01 9.5202260e-01 i
-8.6686687e-01 9.5349291e-01 i
-8.7087087e-01 9.5495870e-01 i
-8.7487487e-01 9.5642000e-01 i
-8.7887888e-01 9.5787685e-01 i
-8.8288288e-01 9.5932928e-01 i
-8.8688689e-01 9.6077732e-01 i
-8.9089089e-01 9.6222102e-01 i
-8.9489489e-01 9.6366039e-01 i
-8.9889890e-01 9.6509548e-01 i
-9.0290290e-01 9.6652632e-01 i
-9.0690691e-01 9.6795292e-01 i
-9.1091091e-01 9.6937534e-01 i
-9.1491491e-01 9.7079360e-01 i
-9.1891892e-01 9.7220772e-01 i
-9.2292292e-01 9.7361774e-01 i
-9.2692693e-01 9.7502369e-01 i
-9.3093093e-01 9.7642559e-01 i
-9.3493493e-01 9.7782348e-01 i
-9.3893894e-01 9.7921739e-01 i
-9.4294294e-01 9.8060734e-01 i
-9.4694695e-01 9.8199336e-01 i
-9.5095095e-01 9.8337547e-01 i
-9.5495495e-01 9.8475372e-01 i
-9.5895896e-01 9.8612811e-01 i
-9.6296296e-01 9.8749869e-01 i
-9.6696697e-01 9.8886547e-01 i
-9.7097097e-01 9.9022849e-01 i
-9.7497497e-01 9.9158776e-01 i
-9.7897898e-01 9.9294331e-01 i
-9.8298298e-01 9.9429518e-01 i
-9.8698699e-01 9.9564338e-01 i
-9.9099099e-01 9.9698793e-01 i
-9.9499499e-01 9.9832887e-01 i
-9.9899900e-01 9.9966622e-01 i
-1.0030030e+00 1.0010000e+00 i
-1.0070070e+00 1.0023302e+00 i
-1.0110110e+00 1.0036569e+00 i
-1.0150150e+00 1.0049802e+00 i
-1.0190190e+00 1.0062999e+00 i
-1.0230230e+00 1.0076162e+00 i
-1.0270270e+00 1.0089290e+00 i
-1.0310310e+00 1.0102385e+00 i
-1.0350350e+00 1.0115446e+00 i
-1.0390390e+00 1.0128473e+00 i
-1.0430430e+00 1.0141466e+00 i
-1.0470470e+00 1.0154426e+00 i
-1.0510511e+00 1.0167354e+00 i
-1.0550551e+00 1.0180248e+00 i
-1.0590591e+00 1.0193110e+00 i
-1.0630631e+00 1.0205940e+00 i
-1.0670671e+00 1.0218737e+00 i
-1.0710711e+00 1.0231503e+00 i
-1.0750751e+00 1.0244237e+00 i
-1.0790791e+00 1.0256939e+00 i
-1.0830831e+00 1.0269609e+00 i
-1.0870871e+00 1.0282249e+00 i
-1.0910911e+00 1.0294857e+00 i
-1.0950951e+00 1.0307435e+00 i
-1.0990991e+00 1.0319982e+00 i
-1.1031031e+00 1.0332499e+00 i
-1.1071071e+00 1.0344985e+00 i
+7.0707071e-01 8.9088357e-01 i
+7.4747475e-01 9.0753944e-01 i
+7.8787879e-01 9.2360541e-01 i
+8.2828283e-01 9.3913109e-01 i
+8.6868687e-01 9.5415973e-01 i
+9.0909091e-01 9.6872931e-01 i
+9.4949495e-01 9.8287334e-01 i
+9.8989899e-01 9.9662160e-01 i
+1.0303030e+00 1.0100007e+00 i
+1.0707071e+00 1.0230344e+00 i
1.1111111e+00 1.0357442e+00 i
-1.1151151e+00 1.0369868e+00 i
-1.1191191e+00 1.0382265e+00 i
-1.1231231e+00 1.0394632e+00 i
-1.1271271e+00 1.0406970e+00 i
-1.1311311e+00 1.0419279e+00 i
-1.1351351e+00 1.0431558e+00 i
-1.1391391e+00 1.0443809e+00 i
-1.1431431e+00 1.0456031e+00 i
-1.1471471e+00 1.0468225e+00 i
-1.1511512e+00 1.0480390e+00 i
-1.1551552e+00 1.0492527e+00 i
-1.1591592e+00 1.0504636e+00 i
-1.1631632e+00 1.0516718e+00 i
-1.1671672e+00 1.0528771e+00 i
-1.1711712e+00 1.0540797e+00 i
-1.1751752e+00 1.0552796e+00 i
-1.1791792e+00 1.0564767e+00 i
-1.1831832e+00 1.0576712e+00 i
-1.1871872e+00 1.0588629e+00 i
-1.1911912e+00 1.0600520e+00 i
-1.1951952e+00 1.0612384e+00 i
-1.1991992e+00 1.0624221e+00 i
-1.2032032e+00 1.0636033e+00 i
-1.2072072e+00 1.0647818e+00 i
-1.2112112e+00 1.0659577e+00 i
-1.2152152e+00 1.0671310e+00 i
-1.2192192e+00 1.0683017e+00 i
-1.2232232e+00 1.0694699e+00 i
-1.2272272e+00 1.0706356e+00 i
-1.2312312e+00 1.0717987e+00 i
-1.2352352e+00 1.0729592e+00 i
-1.2392392e+00 1.0741173e+00 i
-1.2432432e+00 1.0752729e+00 i
-1.2472472e+00 1.0764260e+00 i
-1.2512513e+00 1.0775767e+00 i
-1.2552553e+00 1.0787248e+00 i
-1.2592593e+00 1.0798706e+00 i
-1.2632633e+00 1.0810139e+00 i
-1.2672673e+00 1.0821548e+00 i
-1.2712713e+00 1.0832934e+00 i
-1.2752753e+00 1.0844295e+00 i
-1.2792793e+00 1.0855632e+00 i
-1.2832833e+00 1.0866946e+00 i
-1.2872873e+00 1.0878236e+00 i
-1.2912913e+00 1.0889503e+00 i
-1.2952953e+00 1.0900747e+00 i
-1.2992993e+00 1.0911968e+00 i
-1.3033033e+00 1.0923165e+00 i
-1.3073073e+00 1.0934340e+00 i
-1.3113113e+00 1.0945492e+00 i
-1.3153153e+00 1.0956621e+00 i
-1.3193193e+00 1.0967727e+00 i
-1.3233233e+00 1.0978811e+00 i
-1.3273273e+00 1.0989873e+00 i
-1.3313313e+00 1.1000913e+00 i
-1.3353353e+00 1.1011930e+00 i
-1.3393393e+00 1.1022926e+00 i
-1.3433433e+00 1.1033899e+00 i
-1.3473473e+00 1.1044851e+00 i
-1.3513514e+00 1.1055781e+00 i
-1.3553554e+00 1.1066690e+00 i
-1.3593594e+00 1.1077577e+00 i
-1.3633634e+00 1.1088442e+00 i
-1.3673674e+00 1.1099287e+00 i
-1.3713714e+00 1.1110110e+00 i
-1.3753754e+00 1.1120912e+00 i
-1.3793794e+00 1.1131694e+00 i
-1.3833834e+00 1.1142454e+00 i
-1.3873874e+00 1.1153194e+00 i
-1.3913914e+00 1.1163913e+00 i
-1.3953954e+00 1.1174611e+00 i
-1.3993994e+00 1.1185289e+00 i
-1.4034034e+00 1.1195947e+00 i
-1.4074074e+00 1.1206585e+00 i
-1.4114114e+00 1.1217202e+00 i
-1.4154154e+00 1.1227799e+00 i
-1.4194194e+00 1.1238377e+00 i
-1.4234234e+00 1.1248934e+00 i
-1.4274274e+00 1.1259472e+00 i
-1.4314314e+00 1.1269990e+00 i
-1.4354354e+00 1.1280488e+00 i
-1.4394394e+00 1.1290967e+00 i
-1.4434434e+00 1.1301426e+00 i
-1.4474474e+00 1.1311866e+00 i
-1.4514515e+00 1.1322287e+00 i
-1.4554555e+00 1.1332689e+00 i
-1.4594595e+00 1.1343072e+00 i
-1.4634635e+00 1.1353435e+00 i
-1.4674675e+00 1.1363780e+00 i
-1.4714715e+00 1.1374106e+00 i
-1.4754755e+00 1.1384414e+00 i
-1.4794795e+00 1.1394702e+00 i
-1.4834835e+00 1.1404972e+00 i
-1.4874875e+00 1.1415224e+00 i
-1.4914915e+00 1.1425457e+00 i
-1.4954955e+00 1.1435672e+00 i
-1.4994995e+00 1.1445869e+00 i
-1.5035035e+00 1.1456048e+00 i
-1.5075075e+00 1.1466208e+00 i
-1.5115115e+00 1.1476351e+00 i
-1.5155155e+00 1.1486476e+00 i
-1.5195195e+00 1.1496583e+00 i
-1.5235235e+00 1.1506672e+00 i
-1.5275275e+00 1.1516743e+00 i
-1.5315315e+00 1.1526797e+00 i
-1.5355355e+00 1.1536833e+00 i
-1.5395395e+00 1.1546852e+00 i
-1.5435435e+00 1.1556854e+00 i
-1.5475475e+00 1.1566838e+00 i
-1.5515516e+00 1.1576805e+00 i
+1.1515152e+00 1.0481495e+00 i
+1.1919192e+00 1.0602679e+00 i
+1.2323232e+00 1.0721154e+00 i
+1.2727273e+00 1.0837068e+00 i
+1.3131313e+00 1.0950553e+00 i
+1.3535354e+00 1.1061734e+00 i
+1.3939394e+00 1.1170723e+00 i
+1.4343434e+00 1.1277627e+00 i
+1.4747475e+00 1.1382541e+00 i
+1.5151515e+00 1.1485556e+00 i
1.5555556e+00 1.1586755e+00 i
-1.5595596e+00 1.1596688e+00 i
-1.5635636e+00 1.1606604e+00 i
-1.5675676e+00 1.1616503e+00 i
-1.5715716e+00 1.1626386e+00 i
-1.5755756e+00 1.1636251e+00 i
-1.5795796e+00 1.1646100e+00 i
-1.5835836e+00 1.1655932e+00 i
-1.5875876e+00 1.1665747e+00 i
-1.5915916e+00 1.1675546e+00 i
-1.5955956e+00 1.1685329e+00 i
-1.5995996e+00 1.1695095e+00 i
-1.6036036e+00 1.1704845e+00 i
-1.6076076e+00 1.1714579e+00 i
-1.6116116e+00 1.1724297e+00 i
-1.6156156e+00 1.1733998e+00 i
-1.6196196e+00 1.1743684e+00 i
-1.6236236e+00 1.1753353e+00 i
-1.6276276e+00 1.1763007e+00 i
-1.6316316e+00 1.1772645e+00 i
-1.6356356e+00 1.1782267e+00 i
-1.6396396e+00 1.1791873e+00 i
-1.6436436e+00 1.1801464e+00 i
-1.6476476e+00 1.1811039e+00 i
-1.6516517e+00 1.1820599e+00 i
-1.6556557e+00 1.1830143e+00 i
-1.6596597e+00 1.1839672e+00 i
-1.6636637e+00 1.1849186e+00 i
-1.6676677e+00 1.1858684e+00 i
-1.6716717e+00 1.1868167e+00 i
-1.6756757e+00 1.1877635e+00 i
-1.6796797e+00 1.1887088e+00 i
-1.6836837e+00 1.1896526e+00 i
-1.6876877e+00 1.1905949e+00 i
-1.6916917e+00 1.1915357e+00 i
-1.6956957e+00 1.1924751e+00 i
-1.6996997e+00 1.1934129e+00 i
-1.7037037e+00 1.1943493e+00 i
-1.7077077e+00 1.1952842e+00 i
-1.7117117e+00 1.1962177e+00 i
-1.7157157e+00 1.1971497e+00 i
-1.7197197e+00 1.1980802e+00 i
-1.7237237e+00 1.1990093e+00 i
-1.7277277e+00 1.1999370e+00 i
-1.7317317e+00 1.2008632e+00 i
-1.7357357e+00 1.2017880e+00 i
-1.7397397e+00 1.2027114e+00 i
-1.7437437e+00 1.2036334e+00 i
-1.7477477e+00 1.2045539e+00 i
-1.7517518e+00 1.2054731e+00 i
-1.7557558e+00 1.2063908e+00 i
-1.7597598e+00 1.2073072e+00 i
-1.7637638e+00 1.2082222e+00 i
-1.7677678e+00 1.2091358e+00 i
-1.7717718e+00 1.2100480e+00 i
-1.7757758e+00 1.2109588e+00 i
-1.7797798e+00 1.2118683e+00 i
-1.7837838e+00 1.2127764e+00 i
-1.7877878e+00 1.2136831e+00 i
-1.7917918e+00 1.2145885e+00 i
-1.7957958e+00 1.2154926e+00 i
-1.7997998e+00 1.2163953e+00 i
-1.8038038e+00 1.2172967e+00 i
-1.8078078e+00 1.2181967e+00 i
-1.8118118e+00 1.2190954e+00 i
-1.8158158e+00 1.2199928e+00 i
-1.8198198e+00 1.2208889e+00 i
-1.8238238e+00 1.2217836e+00 i
-1.8278278e+00 1.2226771e+00 i
-1.8318318e+00 1.2235692e+00 i
-1.8358358e+00 1.2244600e+00 i
-1.8398398e+00 1.2253496e+00 i
-1.8438438e+00 1.2262378e+00 i
-1.8478478e+00 1.2271248e+00 i
-1.8518519e+00 1.2280105e+00 i
-1.8558559e+00 1.2288949e+00 i
-1.8598599e+00 1.2297781e+00 i
-1.8638639e+00 1.2306599e+00 i
-1.8678679e+00 1.2315406e+00 i
-1.8718719e+00 1.2324199e+00 i
-1.8758759e+00 1.2332980e+00 i
-1.8798799e+00 1.2341749e+00 i
-1.8838839e+00 1.2350505e+00 i
-1.8878879e+00 1.2359249e+00 i
-1.8918919e+00 1.2367980e+00 i
-1.8958959e+00 1.2376699e+00 i
-1.8998999e+00 1.2385406e+00 i
-1.9039039e+00 1.2394100e+00 i
-1.9079079e+00 1.2402783e+00 i
-1.9119119e+00 1.2411453e+00 i
-1.9159159e+00 1.2420111e+00 i
-1.9199199e+00 1.2428757e+00 i
-1.9239239e+00 1.2437391e+00 i
-1.9279279e+00 1.2446013e+00 i
-1.9319319e+00 1.2454624e+00 i
-1.9359359e+00 1.2463222e+00 i
-1.9399399e+00 1.2471808e+00 i
-1.9439439e+00 1.2480383e+00 i
-1.9479479e+00 1.2488946e+00 i
-1.9519520e+00 1.2497497e+00 i
-1.9559560e+00 1.2506036e+00 i
-1.9599600e+00 1.2514564e+00 i
-1.9639640e+00 1.2523080e+00 i
-1.9679680e+00 1.2531585e+00 i
-1.9719720e+00 1.2540078e+00 i
-1.9759760e+00 1.2548560e+00 i
-1.9799800e+00 1.2557030e+00 i
-1.9839840e+00 1.2565489e+00 i
-1.9879880e+00 1.2573936e+00 i
-1.9919920e+00 1.2582372e+00 i
-1.9959960e+00 1.2590797e+00 i
+1.5959596e+00 1.1686217e+00 i
+1.6363636e+00 1.1784015e+00 i
+1.6767677e+00 1.1880215e+00 i
+1.7171717e+00 1.1974882e+00 i
+1.7575758e+00 1.2068075e+00 i
+1.7979798e+00 1.2159851e+00 i
+1.8383838e+00 1.2250263e+00 i
+1.8787879e+00 1.2339359e+00 i
+1.9191919e+00 1.2427186e+00 i
+1.9595960e+00 1.2513789e+00 i
2.0000000e+00 1.2599210e+00 i
-\documentclass[a4paper]{article}
-\usepackage{standalone}
-\usepackage{newclude}
-\usepackage[a4paper,margin=2cm]{geometry}
-\usepackage{multicol}
-\usepackage{multirow}
+\documentclass[a4paper, twocolumn]{article}
+\usepackage[dvipsnames, table]{xcolor}
+\usepackage{adjustbox}
\usepackage{amsmath}
\usepackage{amssymb}
+\usepackage{blindtext}
+\usepackage{enumitem}
+\usepackage{fancyhdr}
+\usepackage[a4paper,margin=2cm]{geometry}
+\usepackage{graphicx}
\usepackage{harpoon}
+\usepackage{listings}
+\usepackage{longtable}
+\usepackage{makecell}
+\usepackage{mathtools}
+\usepackage{multicol}
+\usepackage{multirow}
+\usepackage{newclude}
+\usepackage{pgfplots}
+\usepackage{pst-plot}
+\usepackage{standalone}
\usepackage{tabularx}
\usepackage{tabu}
-\usepackage{makecell}
-\usepackage[dvipsnames, table]{xcolor}
-\usepackage{blindtext}
-\usepackage{graphicx}
-\usepackage{wrapfig}
-\usepackage{tikz}
+\usepackage{tcolorbox}
\usepackage{tikz-3dplot}
-\usepackage{pgfplots}
-\pgfplotsset{compat=1.8}
-\usepackage{mathtools}
-\usetikzlibrary{calc}
-\usetikzlibrary{angles}
-\usetikzlibrary{datavisualization.formats.functions}
-\usetikzlibrary{decorations.markings}
+\usepackage{tikz}
+\usepackage{tkz-fct}
+\usepackage[obeyspaces]{url}
+\usepackage{wrapfig}
+
+
+\usetikzlibrary{%
+ angles,
+ calc,
+ datavisualization.formats.functions,
+ decorations,
+ decorations.markings,
+ decorations.pathreplacing,
+ decorations.text,
+ scopes
+}
+\newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);}
\usepgflibrary{arrows.meta}
-\usepackage{longtable}
-\usepackage{fancyhdr}
+\pgfplotsset{compat=1.8}
+\psset{dimen=monkey,fillstyle=solid,opacity=.5}
+\def\object{%
+ \psframe[linestyle=none,fillcolor=blue](-2,-1)(2,1)
+ \psaxes[linecolor=gray,labels=none,ticks=none]{->}(0,0)(-3,-3)(3,2)[$x$,0][$y$,90]
+ \rput{*0}{%
+ \psline{->}(0,-2)%
+ \uput[-90]{*0}(0,-2){$\vec{w}$}}
+}
+\newcommand{\tg}{\mathop{\mathrm{tg}}}
+\newcommand{\cotg}{\mathop{\mathrm{cotg}}}
+\newcommand{\arctg}{\mathop{\mathrm{arctg}}}
+\newcommand{\arccotg}{\mathop{\mathrm{arccotg}}}
+\pgfplotsset{every axis/.append style={
+ axis x line=middle, % centre axes
+ axis y line=middle,
+ axis line style={->}, % arrows on axes
+ xlabel={$x$}, % axes labels
+ ylabel={$y$}
+}}
+
\pagestyle{fancy}
\fancyhead[LO,LE]{Year 12 Methods}
\fancyhead[CO,CE]{Andrew Lorimer}
\fancypagestyle{plain}{\fancyhead[LO,LE]{} \fancyhead[CO,CE]{}} % rm title & author for first page
+
\providecommand{\tightlist}{\setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}
+\linespread{1.5}
\setlength{\parindent}{0cm}
-\usepackage{mathtools}
-\usepackage{xcolor} % used only to show the phantomed stuff
\setlength\fboxsep{0pt} \setlength\fboxrule{.2pt} % for the \fboxes
\newcommand*\leftlap[3][\,]{#1\hphantom{#2}\mathllap{#3}}
\newcommand*\rightlap[2]{\mathrlap{#2}\hphantom{#1}}
+
\newcolumntype{L}[1]{>{\hsize=#1\hsize\raggedright\arraybackslash}X}
\newcolumntype{R}[1]{>{\hsize=#1\hsize\raggedleft\arraybackslash}X}
+\newcolumntype{Y}{>{\centering\arraybackslash}X}
+
\definecolor{cas}{HTML}{e6f0fe}
+\definecolor{important}{HTML}{fc9871}
+\definecolor{dark-gray}{gray}{0.2}
\definecolor{shade1}{HTML}{ffffff}
\definecolor{shade2}{HTML}{e6f2ff}
\definecolor{shade3}{HTML}{cce2ff}
-\linespread{1.5}
-\newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);}
-\newcommand{\tg}{\mathop{\mathrm{tg}}}
-\newcommand{\cotg}{\mathop{\mathrm{cotg}}}
-\newcommand{\arctg}{\mathop{\mathrm{arctg}}}
-\newcommand{\arccotg}{\mathop{\mathrm{arccotg}}}
-\pgfplotsset{every axis/.append style={
- axis x line=middle, % centre axes
- axis y line=middle,
- axis line style={->}, % arrows on axes
- xlabel={$x$}, % axes labels
- ylabel={$y$},
-}}
+
+\newtcolorbox{cas}{colframe=cas!75!black, title=On CAS, left*=3mm}
+\newtcolorbox{warning}{colback=white!90!black, leftrule=3mm, colframe=important, coltext=important, fontupper=\sffamily\bfseries}
+
\begin{document}
\date{}
\maketitle
-\begin{multicols}{2}
-
- \section{Functions}
-
- \begin{itemize}
- \tightlist
- \item vertical line test
- \item each \(x\) value produces only one \(y\) value
- \end{itemize}
- \subsection*{One to one functions}
+\section{Functions}
- \begin{itemize} \tightlist
- \item
- \(f(x)\) is \emph{one to one} if \(f(a) \ne f(b)\) if
- \(a, b \in \operatorname{dom}(f)\) and \(a \ne b\)\\
- \(\implies\) unique \(y\) for each \(x\) (\(\sin x\) is not 1:1,
- \(x^3\) is)
- \item
- horizontal line test
- \item
- if not one to one, it is many to one
- \end{itemize}
+\begin{itemize} \tightlist
+ \item vertical line test
+ \item each \(x\) value produces only one \(y\) value
+\end{itemize}
- \subsection*{Odd and even functions}
+\subsection*{One to one functions}
+
+\begin{itemize} \tightlist
+ \item
+ \(f(x)\) is \emph{one to one} if \(f(a) \ne f(b)\) if
+ \(a, b \in \operatorname{dom}(f)\) and \(a \ne b\)\\
+ \(\implies\) unique \(y\) for each \(x\) (\(\sin x\) is not 1:1,
+ \(x^3\) is)
+ \item
+ horizontal line test
+ \item
+ if not one to one, it is many to one
+\end{itemize}
- \begin{align*}
- \text{Even:}&& f(x) &= f(-x) \\
- \text{Odd:} && -f(x) &= f(-x)
- \end{align*}
+\subsection*{Odd and even functions}
+
+\begin{align*}
+ \text{Even:}&& f(x) &= f(-x) \\
+ \text{Odd:} && -f(x) &= f(-x)
+\end{align*}
+
+Even \(\implies\) symmetrical across \(y\)-axis \\
+\(x^{\pm {p \over q}}\) is odd if \(q\) is odd\\
+For \(x^n\), parity of \(n \equiv\) parity of function
+
+\begin{tabularx}{\columnwidth}{XX}
+ \textbf{Even:} & \textbf{Odd:} \\
+ \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^2)}; \end{axis}\end{tikzpicture} &
+ \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^3)}; \end{axis}\end{tikzpicture}
+\end{tabularx}
+
+\subsection*{Inverse functions}
+
+\begin{itemize} \tightlist
+ \item Inverse of \(f(x)\) is denoted \(f^{-1}(x)\)
+ \item \(f\) must be one to one
+ \item If \(f(g(x)) = x\), then \(g\) is the inverse of \(f\)
+ \item Represents reflection across \(y=x\)
+ \item \(\implies f^{-1}(x)=f(x)\) intersections lie on \(y=x\)
+ \item \(\operatorname{ran} \> f = \operatorname{dom} \> f^{-1} \\
+ \operatorname{dom} \> f = \operatorname{ran} \> f^{-1}\)
+ \item ``Inverse'' \(\ne\) ``inverse \emph{function}'' (functions must pass vertical line test)\\
+\end{itemize}
- Even \(\implies\) symmetrical across \(y\)-axis \\
- \(x^{\pm {p \over q}}\) is odd if \(q\) is odd\\
- For \(x^n\), parity of \(n \equiv\) parity of function
+\subsubsection*{Finding \(f^{-1}\)}
- \begin{tabularx}{\columnwidth}{XX}
- \textbf{Even:} & \textbf{Odd:} \\
- \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^2)}; \end{axis}\end{tikzpicture} &
- \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^3)}; \end{axis}\end{tikzpicture}
- \end{tabularx}
+\begin{enumerate} \tightlist
+ \item Let \(y=f(x)\)
+ \item Swap \(x\) and \(y\) (``take inverse''
+ \item Solve for \(y\) \\
+ Sqrt: state \(\pm\) solutions then restrict
+ \item State rule as \(f^{-1}(x)=\dots\)
+ \item For inverse \emph{function}, state in function notation
+\end{enumerate}
- \subsection*{Inverse functions}
+\subsection*{Simultaneous equations (linear)}
- \begin{itemize} \tightlist
- \item Inverse of \(f(x)\) is denoted \(f^{-1}(x)\)
- \item \(f\) must be one to one
- \item If \(f(g(x)) = x\), then \(g\) is the inverse of \(f\)
- \item Represents reflection across \(y=x\)
- \item \(\implies f^{-1}(x)=f(x)\) intersections lie on \(y=x\)
- \item \(\operatorname{ran} \> f = \operatorname{dom} \> f^{-1} \\
- \operatorname{dom} \> f = \operatorname{ran} \> f^{-1}\)
- \item ``Inverse'' \(\ne\) ``inverse \emph{function}'' (functions must pass vertical line test)\\
- \end{itemize}
+\begin{itemize} \tightlist
+ \item \textbf{Unique solution} - lines intersect at point
+ \item \textbf{Infinitely many solutions} - lines are equal
+ \item \textbf{No solution} - lines are parallel
+\end{itemize}
- \subsubsection*{Finding \(f^{-1}\)}
+\subsubsection*{Solving \(\protect\begin{cases}px + qy = a \\ rx + sy = b\protect\end{cases} \>\) for \(\{0,1,\infty\}\) solutions}
+ where all coefficients are known except for one, and \(a, b\) are known
\begin{enumerate} \tightlist
- \item Let \(y=f(x)\)
- \item Swap \(x\) and \(y\) (``take inverse''
- \item Solve for \(y\) \\
- Sqrt: state \(\pm\) solutions then restrict
- \item State rule as \(f^{-1}(x)=\dots\)
- \item For inverse \emph{function}, state in function notation
+ \item Write as matrices: \(\begin{bmatrix}p & q \\ r & s \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}\)
+ \item Find determinant of first matrix: \(\Delta = ps-qr\)
+ \item Let \(\Delta = 0\) for number of solutions \(\ne 1\)\\
+ or let \(\Delta \ne 0\) for one unique solution.
+ \item Solve determinant equation to find variable \\
+ \textbf{For infinite/no solutions:}
+ \item Substitute variable into both original equations
+ \item Rearrange equations so that LHS of each is the same
+ \item \(\text{RHS}(1) = \text{RHS}(2) \implies (1)=(2) \> \forall x\) (\(\infty\) solns)\\
+ \(\text{RHS}(1) \ne \text{RHS}(2) \implies (1)\ne(2) \> \forall x\) (0 solns)
\end{enumerate}
-
- \subsection*{Simultaneous equations (linear)}
-
- \begin{itemize} \tightlist
- \item \textbf{Unique solution} - lines intersect at point
- \item \textbf{Infinitely many solutions} - lines are equal
- \item \textbf{No solution} - lines are parallel
- \end{itemize}
-
- \subsubsection*{Solving \(\protect\begin{cases}px + qy = a \\ rx + sy = b\protect\end{cases} \>\) for \(\{0,1,\infty\}\) solutions}
- where all coefficients are known except for one, and \(a, b\) are known
-
- \begin{enumerate} \tightlist
- \item Write as matrices: \(\begin{bmatrix}p & q \\ r & s \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}\)
- \item Find determinant of first matrix: \(\Delta = ps-qr\)
- \item Let \(\Delta = 0\) for number of solutions \(\ne 1\)\\
- or let \(\Delta \ne 0\) for one unique solution.
- \item Solve determinant equation to find variable \\
- \textbf{For infinite/no solutions:}
- \item Substitute variable into both original equations
- \item Rearrange equations so that LHS of each is the same
- \item \(\text{RHS}(1) = \text{RHS}(2) \implies (1)=(2) \> \forall x\) (\(\infty\) solns)\\
- \(\text{RHS}(1) \ne \text{RHS}(2) \implies (1)\ne(2) \> \forall x\) (0 solns)
- \end{enumerate}
-
- \colorbox{cas}{On CAS:} Matrix \(\rightarrow\) \texttt{det}
-
- \subsubsection*{Solving \(\protect\begin{cases}a_1 x + b_1 y + c_1 z = d_1 \\ a_2 x + b_2 y + c_2 z = d_2 \\ a_3 x + b_3 y + c_3 z = d_3\protect\end{cases}\)}
-
- \begin{itemize} \tightlist
- \item Use elimination
- \item Generate two new equations with only two variables
- \item Rearrange \& solve
- \item Substitute one variable into another equation to find another variable
- \end{itemize}
-\subsection*{Piecewise functions}
+ \colorbox{cas}{On CAS:} Matrix \(\rightarrow\) \texttt{det}
-\[\text{e.g.} \quad f(x) = \begin{cases} x^{1 / 3}, \hspace{2em} x \le 0 \\ 2, \hspace{3.4em} 0 < x < 2 \\ x, \hspace{3.4em} x \ge 2 \end{cases}\]
+ \subsubsection*{Solving \(\protect\begin{cases}a_1 x + b_1 y + c_1 z = d_1 \\ a_2 x + b_2 y + c_2 z = d_2 \\ a_3 x + b_3 y + c_3 z = d_3\protect\end{cases}\)}
-\textbf{Open circle:} point included\\
-\textbf{Closed circle:} point not included
+ \begin{itemize} \tightlist
+ \item Use elimination
+ \item Generate two new equations with only two variables
+ \item Rearrange \& solve
+ \item Substitute one variable into another equation to find another variable
+ \end{itemize}
-\subsection*{Operations on functions}
+ \subsection*{Piecewise functions}
-For \(f \pm g\) and \(f \times g\):
-\quad \(\text{dom}^\prime = \operatorname{dom}(f) \cap \operatorname{dom}(g)\)
+ \[\text{e.g.} \quad f(x) = \begin{cases} x^{1 / 3}, \hspace{2em} x \le 0 \\ 2, \hspace{3.4em} 0 < x < 2 \\ x, \hspace{3.4em} x \ge 2 \end{cases}\]
-Addition of linear piecewise graphs: add \(y\)-values at key points
+ \textbf{Open circle:} point included\\
+ \textbf{Closed circle:} point not included
-Product functions:
+ \subsection*{Operations on functions}
-\begin{itemize}
-\tightlist
-\item
- product will equal 0 if \(f=0\) or \(g=0\)
-\item
- \(f^\prime(x)=0 \veebar g^\prime(x)=0 \not\Rightarrow (f \times g)^\prime(x)=0\)
-\end{itemize}
+ For \(f \pm g\) and \(f \times g\):
+ \quad \(\text{dom}^\prime = \operatorname{dom}(f) \cap \operatorname{dom}(g)\)
-\subsection*{Composite functions}
+ Addition of linear piecewise graphs: add \(y\)-values at key points
-\((f \circ g)(x)\) is defined iff
-\(\operatorname{ran}(g) \subseteq \operatorname{dom}(f)\)
+ Product functions:
+ \begin{itemize}
+ \tightlist
+ \item
+ product will equal 0 if \(f=0\) or \(g=0\)
+ \item
+ \(f^\prime(x)=0 \veebar g^\prime(x)=0 \not\Rightarrow (f \times g)^\prime(x)=0\)
+ \end{itemize}
- \pgfplotsset{every axis/.append style={ ticks=none, xlabel=, ylabel=, }} % remove axis labels & ticks
- \begin{table*}[ht]
+ \subsection*{Composite functions}
+
+ \((f \circ g)(x)\) is defined iff
+ \(\operatorname{ran}(g) \subseteq \operatorname{dom}(f)\)
+
+ \pgfplotsset{
+ blank/.append style={%
+ enlargelimits=true,
+ ticks=none,
+ yticklabels={,,}, xticklabels={,,},
+ xlabel=, ylabel=,
+ scale=0.4,
+ samples=100, smooth, unbounded coords=jump
+ }
+ }
+ \tikzset{
+ blankplot/.append style={orange, mark=none}
+ }
+
+ \begin{figure*}[ht]
\centering
- \begin{tabu} to \textwidth {@{} X[0.3,r] *2{|X[c,m]}@{}}
- & \(n\) is even & \(n\) is odd \\ \tabucline{1pt}
- \(x^n, n \in \mathbb{Z}^+\) &
- \vspace{1em}\begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[orange, mark=none] {(x^2)}; \end{axis}\end{tikzpicture} &
- \begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[orange, mark=none] {(x^3)}; \end{axis}\end{tikzpicture} \\
- \(x^n, n \in \mathbb{Z}^-\) &
- \begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-4, xmax=4, ymax=8, ymin=-0, scale=0.4, smooth] \addplot[orange, mark=none, samples=100] {(x^(-2))}; \end{axis}\end{tikzpicture} &
- \begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[orange, mark=none, domain=-3:-0.1] {(x^(-1))}; \addplot[orange, mark=none, domain=0.1:3] {(x^(-1))}; \end{axis}\end{tikzpicture} \\
- \(x^{\frac{1}{n}}, n \in \mathbb{Z}^-\) &
- \begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-1, xmax=5, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[orange, mark=none] {(x^(1/2))}; \end{axis}\end{tikzpicture} &
- \begin{tikzpicture}
- \begin{axis}[enlargelimits=false, yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, ymin=-3, ymax=3, smooth, scale=0.4]
- \addplot [orange,domain=-2:2,samples=1000,no markers] gnuplot[id=poly]{sgn(x)*(abs(x)**(1./3)) };
- \end{axis}
- \end{tikzpicture}
- \end{tabu}
- \hrule
- \end{table*}
- \pgfplotsset{every axis/.append style={ xlabel=\(x\), ylabel=\(y\) }} % put axis labels back
+
+ \begin{tabularx}{\textwidth}{r|Y|Y}
+
+ & \(n\) is even & \(n\) is odd \\ \hline
+
+ \centering \(x^n, n \in \mathbb{Z}^+\) &
+
+ \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
+ \begin{axis}[blank, xmin=-3, xmax=3]
+ \addplot[blankplot] {(x^2)};
+ \end{axis}
+ \end{tikzpicture}} &
+
+ \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
+ \begin{axis}[blank, xmin=-3, xmax=3]
+ \addplot[blankplot, domain=-3:3] {(x^3)};
+ \end{axis}
+ \end{tikzpicture}} \\ \hline
+
+ \centering \(x^n, n \in \mathbb{Z}^-\) &
+
+ \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
+ \begin{axis}[blank, xmin=-4, xmax=4, ymax=8, ymin=-0]
+ \addplot[blankplot, samples=100] {(x^(-2))};
+ \end{axis}
+ \end{tikzpicture}} &
+
+ \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
+ \begin{axis}[blank, xmin=-3, xmax=3]
+ \addplot[blankplot, domain=-3:-0.1] {(x^(-1))};
+ \addplot[blankplot, domain=0.1:3] {(x^(-1))};
+ \end{axis}
+ \end{tikzpicture}} \\ \hline
+
+ \centering \(x^{\frac{1}{n}}, n \in \mathbb{Z}^-\) &
+
+ \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
+ \begin{axis}[blank, xmin=-1, xmax=5]
+ \addplot[blankplot] {(x^(1/2))};
+ \end{axis}
+ \end{tikzpicture}} &
+
+ \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
+ \begin{axis}[blank, xmin=-3, xmax=3, ymin=-3, ymax=3]
+ \addplot [blankplot, domain=-2:2] gnuplot[id=poly]{sgn(x)*(abs(x)**(1./3)) };
+ \end{axis}
+ \end{tikzpicture}} \\ \hline
+
+ \end{tabularx}
+ \end{figure*}
\section{Polynomials}
\input{circ-functions}
\input{calculus}
- \end{multicols}
- \end{document}
+
+
+ \section{Statistics}
+
+ \subsection*{Probability}
+
+ \begin{align*}
+ \Pr(A \cup B) &= \Pr(A) + \Pr(B) - \Pr(A \cap B) \\
+ \Pr(A \cap B) &= \Pr(A|B) \times \Pr(B) \\
+ \Pr(A|B) &= \frac{\Pr(A \cap B)}{\Pr(B)} \\
+ \Pr(A) &= \Pr(A|B) \cdot \Pr(B) + \Pr(A|B^{\prime}) \cdot \Pr(B^{\prime})
+ \end{align*}
+
+ Mutually exclusive \(\implies \Pr(A \cup B) = 0\) \\
+
+ Independent events:
+ \begin{flalign*}
+ \quad \Pr(A \cap B) &= \Pr(A) \times \Pr(B)& \\
+ \Pr(A|B) &= \Pr(A) \\
+ \Pr(B|A) &= \Pr(B)
+ \end{flalign*}
+
+ \subsection*{Combinatorics}
+
+ \begin{itemize}
+ \item Arrangements \({n \choose k} = \frac{n!}{(n-k)}\)
+ \item \colorbox{important}{Combinations} \({n \choose k} = \frac{n!}{k!(n-k)!}\)
+ \item Note \({n \choose k} = {n \choose k-1}\)
+ \end{itemize}
+
+ \subsection*{Distributions}
+
+ \subsubsection*{Mean \(\mu\)}
+
+ \textbf{Mean} \(\mu\) or \textbf{expected value} \(E(X)\)
+
+ \begin{align*}
+ E(X) &= \frac{\Sigma \left[ x \cdot f(x) \right]}{\Sigma f} \tag{\(f =\) absolute frequency} \\
+ &= \sum_{i=1}^n \left[ x_i \cdot \Pr(X=x_i) \right] \tag{discrete}\\
+ &= \int_\textbf{X} (x \cdot f(x)) \> dx
+ \end{align*}
+
+ \subsubsection*{Mode}
+
+ Most popular value (has highest probability of all \(X\) values). Multiple modes can exist if \(>1 \> X\) value have equal-highest probability. Number must exist in distribution.
+
+ \subsubsection*{Median}
+
+ If \(m > 0.5\), then value of \(X\) that is reached is the median of \(X\). If \(m = 0.5 = 0.5\), then \(m\) is halfway between this value and the next. To find \(m\), add values of \(X\) from smallest to alrgest until the sum reaches 0.5.
+
+ \[ m = X \> \text{such that} \> \int_{-\infty}^{m} f(x) dx = 0.5 \]
+
+ \subsubsection*{Variance \(\sigma^2\)}
+
+ \begin{align*}
+ \operatorname{Var}(x) &= \sum_{i=1}^n p_i (x_i-\mu)^2 \\
+ &= \sum (x-\mu)^2 \times \Pr(X=x) \\
+ &= \sum x^2 \times p(x) - \mu^2 \\
+ &= \operatorname{E}(X^2) - [\operatorname{E}(X)]^2
+ &= E\left[(X-\mu)^2\right]
+ \end{align*}
+
+ \subsubsection*{Standard deviation \(\sigma\)}
+
+ \begin{align*}
+ \sigma &= \operatorname{sd}(X) \\
+ &= \sqrt{\operatorname{Var}(X)}
+ \end{align*}
+
+ \subsection*{Binomial distributions}
+
+ Conditions for a \textit{binomial distribution}:
+ \begin{enumerate}
+ \item Two possible outcomes: \textbf{success} or \textbf{failure}
+ \item \(\Pr(\text{success})\) is constant across trials (also denoted \(p\))
+ \item Finite number \(n\) of independent trials
+ \end{enumerate}
+
+
+ \subsubsection*{Properties of \(X \sim \operatorname{Bi}(n,p)\)}
+
+ \begin{align*}
+ \mu(X) &= np \\
+ \operatorname{Var}(X) &= np(1-p) \\
+ \sigma(X) &= \sqrt{np(1-p)} \\
+ \Pr(X=x) &= {n \choose x} \cdot p^x \cdot (1-p)^{n-x}
+ \end{align*}
+
+ \begin{cas}
+ Interactive \(\rightarrow\) Distribution \(\rightarrow\) \verb;binomialPdf; then input
+ \begin{description}[nosep, style=multiline, labelindent=0.5cm, leftmargin=3cm, font=\normalfont]
+ \item [x:] no. of successes
+ \item [numtrial:] no. of trials
+ \item [pos:] probability of success
+ \end{description}
+ \end{cas}
+
+ \subsection*{Continuous random variables}
+
+ A continuous random variable \(X\) has a pdf \(f\) such that:
+
+ \begin{enumerate}
+ \item \(f(x) \ge 0 \forall x \)
+ \item \(\int^\infty_{-\infty} f(x) \> dx = 1\)
+ \end{enumerate}
+
+ \begin{align*}
+ E(X) &= \int_\textbf{X} (x \cdot f(x)) \> dx \\
+ \operatorname{Var}(X) &= E\left[(X-\mu)^2\right]
+ \end{align*}
+
+ \[ \Pr(X \le c) = \int^c_{-\infty} f(x) \> dx \]
+
+
+ \subsection*{Two random variables \(X, Y\)}
+
+ If \(X\) and \(Y\) are independent:
+ \begin{align*}
+ \operatorname{E}(aX+bY) & = a\operatorname{E}(X)+b\operatorname{E}(Y) \\
+ \operatorname{Var}(aX \pm bY \pm c) &= a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y)
+ \end{align*}
+
+ \subsection*{Linear functions \(X \rightarrow aX+b\)}
+
+ \begin{align*}
+ \Pr(Y \le y) &= \Pr(aX+b \le y) \\
+ &= \Pr\left(X \le \dfrac{y-b}{a}\right) \\
+ &= \int^{\frac{y-b}{a}}_{-\infty} f(x) \> dx
+ \end{align*}
+
+ \begin{align*}
+ \textbf{Mean:} && \operatorname{E}(aX+b) & = a\operatorname{E}(X)+b \\
+ \textbf{Variance:} && \operatorname{Var}(aX+b) &= a^2 \operatorname{Var}(X) \\
+ \end{align*}
+
+ \subsection*{Expectation theorems}
+
+ For some non-linear function \(g\), the expected value \(E(g(X))\) is not equal to \(g(E(X))\).
+
+ \begin{align*}
+ E(X^2) &= \operatorname{Var}(X) - \left[E(X)\right]^2 \\
+ E(X^n) &= \Sigma x^n \cdot p(x) \tag{non-linear} \\
+ &\ne [E(X)]^n \\
+ E(aX \pm b) &= aE(X) \pm b \tag{linear} \\
+ E(b) &= b \tag{\(\forall b \in \mathbb{R}\)}\\
+ E(X+Y) &= E(X) + E(Y) \tag{two variables}
+ \end{align*}
+
+ \subsection*{Sample mean}
+
+ Approximation of the \textbf{population mean} determined experimentally.
+
+ \[ \overline{x} = \dfrac{\Sigma x}{n} \]
+
+ where
+ \begin{description}[nosep, labelindent=0.5cm]
+ \item \(n\) is the size of the sample (number of sample points)
+ \item \(x\) is the value of a sample point
+ \end{description}
+
+ \begin{cas}
+ \begin{enumerate}[leftmargin=3mm]
+ \item Spreadsheet
+ \item In cell A1:\\ \path{mean(randNorm(sd, mean, sample size))}
+ \item Edit \(\rightarrow\) Fill \(\rightarrow\) Fill Range
+ \item Input range as A1:An where \(n\) is the number of samples
+ \item Graph \(\rightarrow\) Histogram
+ \end{enumerate}
+ \end{cas}
+
+ \subsubsection*{Sample size of \(n\)}
+
+ \[ \overline{X} = \sum_{i=1}^n \frac{x_i}{n} = \dfrac{\sum x}{n} \]
+
+ Sample mean is distributed with mean \(\mu\) and sd \(\frac{\sigma}{\sqrt{n}}\) (approaches these values for increasing sample size \(n\)).
+
+ For a new distribution with mean of \(n\) trials, \(\operatorname{E}(X^\prime) = \operatorname{E}(X), \quad \operatorname{sd}(X^\prime) = \dfrac{\operatorname{sd}(X)}{\sqrt{n}}\)
+
+ \begin{cas}
+
+ \begin{itemize}
+ \item Spreadsheet \(\rightarrow\) Catalog \(\rightarrow\) \verb;randNorm(sd, mean, n); where \verb;n; is the number of samples. Show histogram with Histogram key in top left
+ \item To calculate parameters of a dataset: Calc \(\rightarrow\) One-variable
+ \end{itemize}
+
+ \end{cas}
+
+ \subsection*{Normal distributions}
+
+
+ \[ Z = \frac{X - \mu}{\sigma} \]
+
+ Normal distributions must have area (total prob.) of 1 \(\implies \int^\infty_{-\infty} f(x) \> dx = 1\) \\
+ \(\text{mean} = \text{mode} = \text{median}\)
+
+ \begin{warning}
+ Always express \(z\) as +ve. Express confidence \textit{interval} as ordered pair.
+ \end{warning}
+
+ \pgfmathdeclarefunction{gauss}{2}{%
+ \pgfmathparse{1/(#2*sqrt(2*pi))*exp(-((x-#1)^2)/(2*#2^2))}%
+ }
+ \pgfkeys{/pgf/decoration/.cd,
+ distance/.initial=10pt
+ } \pgfdeclaredecoration{add dim}{final}{
+ \state{final}{%
+ \pgfmathsetmacro{\dist}{5pt*\pgfkeysvalueof{/pgf/decoration/distance}/abs(\pgfkeysvalueof{/pgf/decoration/distance})}
+ \pgfpathmoveto{\pgfpoint{0pt}{0pt}}
+ \pgfpathlineto{\pgfpoint{0pt}{2*\dist}}
+ \pgfpathmoveto{\pgfpoint{\pgfdecoratedpathlength}{0pt}}
+ \pgfpathlineto{\pgfpoint{(\pgfdecoratedpathlength}{2*\dist}}
+ \pgfsetarrowsstart{latex}
+ \pgfsetarrowsend{latex}
+ \pgfpathmoveto{\pgfpoint{0pt}{\dist}}
+ \pgfpathlineto{\pgfpoint{\pgfdecoratedpathlength}{\dist}}
+ \pgfusepath{stroke}
+ \pgfpathmoveto{\pgfpoint{0pt}{0pt}}
+ \pgfpathlineto{\pgfpoint{\pgfdecoratedpathlength}{0pt}}
+ }}
+ \tikzset{dim/.style args={#1,#2}{decoration={add dim,distance=#2},
+ decorate,
+ postaction={decorate,decoration={text along path,
+ raise=#2,
+ text align={align=center},
+ text={#1}}}}}
+ \begin{figure*}[hb]
+ \centering
+ \begin{tikzpicture}
+ \begin{axis}[every axis plot post/.style={
+ mark=none,domain=-3:3,samples=50,smooth},
+ axis x line=bottom,
+ axis y line=left,
+ enlargelimits=upper,
+ x=\textwidth/10,
+ ytick={0.55},
+ yticklabels={\(\frac{1}{\sigma \sqrt{2\pi}}\)},
+ xtick={-2,-1,0,1,2},
+ x tick label style = {font=\footnotesize},
+ xticklabels={\((\mu-2\sigma)\), \((\mu-\sigma)\), \(\mu\), \((\mu+\sigma)\), \((\mu+2\sigma)\)},
+ xlabel={\(x\)},
+ every axis x label/.style={at={(current axis.right of origin)},anchor=north west},
+ every axis y label/.style={at={(axis description cs:-0.02,0.2)}, anchor=south west, rotate=90},
+ ylabel={\(\Pr(X=x)\)}]
+ \addplot {gauss(0,0.75)};
+ \fill[red!30] (-3,0) -- plot[id=f3,domain=-3:3,samples=50] function {1/(0.75*sqrt(2*pi))*exp(-((x)^2)/(2*0.75^2))} -- (3,0) -- cycle;
+ \fill[darkgray!30] (3,0) -- plot[id=f3,domain=-3:3,samples=50] function {1/(0.75*sqrt(2*pi))*exp(-x*x*0.5/(0.75*0.75))} -- (3,0) -- cycle;
+ \fill[lightgray!30] (-2,0) -- plot[id=f3,domain=-2:2,samples=50] function {1/(0.75*sqrt(2*pi))*exp(-x*x*0.5/(0.75*0.75))} -- (2,0) -- cycle;
+ \fill[white!30] (-1,0) -- plot[id=f3,domain=-1:1,samples=50] function {1/(0.75*sqrt(2*pi))*exp(-x*x*0.5/(0.75*0.75))} -- (1,0) -- cycle;
+ \begin{scope}[<->]
+ \draw (-1,0.35) -- (1,0.35) node [midway, fill=white] {68.3\%};
+ \draw (-2,0.25) -- (2,0.25) node [midway, fill=white] {95.5\%};
+ \draw (-3,0.15) -- (3,0.15) node [midway, fill=white] {99.7\%};
+ \end{scope}
+ \begin{scope}[-, dashed, gray]
+ \draw (-1,0) -- (-1, 0.35);
+ \draw (1,0) -- (1, 0.35);
+ \draw (-2,0) -- (-2, 0.25);
+ \draw (2,0) -- (2, 0.25);
+ \draw (-3,0) -- (-3, 0.15);
+ \draw (3,0) -- (3, 0.15);
+ \end{scope}
+ \end{axis}
+ \begin{axis}[every axis plot post/.append style={
+ mark=none,domain=-3:3,samples=50,smooth},
+ axis x line=bottom,
+ enlargelimits=upper,
+ x=\textwidth/10,
+ xtick={-2,-1,0,1,2},
+ axis x line shift=30pt,
+ hide y axis,
+ x tick label style = {font=\footnotesize},
+ xlabel={\(Z\)},
+ every axis x label/.style={at={(axis description cs:1,-0.25)},anchor=south west}]
+ \addplot {gauss(0,0.75)};
+ \end{axis}
+ \end{tikzpicture}
+ \end{figure*}
+ \end{document}