cache-tree.con commit parse_color: refactor color storage (695d95d)
   1#include "cache.h"
   2#include "tree.h"
   3#include "tree-walk.h"
   4#include "cache-tree.h"
   5
   6#ifndef DEBUG
   7#define DEBUG 0
   8#endif
   9
  10struct cache_tree *cache_tree(void)
  11{
  12        struct cache_tree *it = xcalloc(1, sizeof(struct cache_tree));
  13        it->entry_count = -1;
  14        return it;
  15}
  16
  17void cache_tree_free(struct cache_tree **it_p)
  18{
  19        int i;
  20        struct cache_tree *it = *it_p;
  21
  22        if (!it)
  23                return;
  24        for (i = 0; i < it->subtree_nr; i++)
  25                if (it->down[i]) {
  26                        cache_tree_free(&it->down[i]->cache_tree);
  27                        free(it->down[i]);
  28                }
  29        free(it->down);
  30        free(it);
  31        *it_p = NULL;
  32}
  33
  34static int subtree_name_cmp(const char *one, int onelen,
  35                            const char *two, int twolen)
  36{
  37        if (onelen < twolen)
  38                return -1;
  39        if (twolen < onelen)
  40                return 1;
  41        return memcmp(one, two, onelen);
  42}
  43
  44static int subtree_pos(struct cache_tree *it, const char *path, int pathlen)
  45{
  46        struct cache_tree_sub **down = it->down;
  47        int lo, hi;
  48        lo = 0;
  49        hi = it->subtree_nr;
  50        while (lo < hi) {
  51                int mi = (lo + hi) / 2;
  52                struct cache_tree_sub *mdl = down[mi];
  53                int cmp = subtree_name_cmp(path, pathlen,
  54                                           mdl->name, mdl->namelen);
  55                if (!cmp)
  56                        return mi;
  57                if (cmp < 0)
  58                        hi = mi;
  59                else
  60                        lo = mi + 1;
  61        }
  62        return -lo-1;
  63}
  64
  65static struct cache_tree_sub *find_subtree(struct cache_tree *it,
  66                                           const char *path,
  67                                           int pathlen,
  68                                           int create)
  69{
  70        struct cache_tree_sub *down;
  71        int pos = subtree_pos(it, path, pathlen);
  72        if (0 <= pos)
  73                return it->down[pos];
  74        if (!create)
  75                return NULL;
  76
  77        pos = -pos-1;
  78        ALLOC_GROW(it->down, it->subtree_nr + 1, it->subtree_alloc);
  79        it->subtree_nr++;
  80
  81        down = xmalloc(sizeof(*down) + pathlen + 1);
  82        down->cache_tree = NULL;
  83        down->namelen = pathlen;
  84        memcpy(down->name, path, pathlen);
  85        down->name[pathlen] = 0;
  86
  87        if (pos < it->subtree_nr)
  88                memmove(it->down + pos + 1,
  89                        it->down + pos,
  90                        sizeof(down) * (it->subtree_nr - pos - 1));
  91        it->down[pos] = down;
  92        return down;
  93}
  94
  95struct cache_tree_sub *cache_tree_sub(struct cache_tree *it, const char *path)
  96{
  97        int pathlen = strlen(path);
  98        return find_subtree(it, path, pathlen, 1);
  99}
 100
 101static int do_invalidate_path(struct cache_tree *it, const char *path)
 102{
 103        /* a/b/c
 104         * ==> invalidate self
 105         * ==> find "a", have it invalidate "b/c"
 106         * a
 107         * ==> invalidate self
 108         * ==> if "a" exists as a subtree, remove it.
 109         */
 110        const char *slash;
 111        int namelen;
 112        struct cache_tree_sub *down;
 113
 114#if DEBUG
 115        fprintf(stderr, "cache-tree invalidate <%s>\n", path);
 116#endif
 117
 118        if (!it)
 119                return 0;
 120        slash = strchrnul(path, '/');
 121        namelen = slash - path;
 122        it->entry_count = -1;
 123        if (!*slash) {
 124                int pos;
 125                pos = subtree_pos(it, path, namelen);
 126                if (0 <= pos) {
 127                        cache_tree_free(&it->down[pos]->cache_tree);
 128                        free(it->down[pos]);
 129                        /* 0 1 2 3 4 5
 130                         *       ^     ^subtree_nr = 6
 131                         *       pos
 132                         * move 4 and 5 up one place (2 entries)
 133                         * 2 = 6 - 3 - 1 = subtree_nr - pos - 1
 134                         */
 135                        memmove(it->down+pos, it->down+pos+1,
 136                                sizeof(struct cache_tree_sub *) *
 137                                (it->subtree_nr - pos - 1));
 138                        it->subtree_nr--;
 139                }
 140                return 1;
 141        }
 142        down = find_subtree(it, path, namelen, 0);
 143        if (down)
 144                do_invalidate_path(down->cache_tree, slash + 1);
 145        return 1;
 146}
 147
 148void cache_tree_invalidate_path(struct index_state *istate, const char *path)
 149{
 150        if (do_invalidate_path(istate->cache_tree, path))
 151                istate->cache_changed |= CACHE_TREE_CHANGED;
 152}
 153
 154static int verify_cache(struct cache_entry **cache,
 155                        int entries, int flags)
 156{
 157        int i, funny;
 158        int silent = flags & WRITE_TREE_SILENT;
 159
 160        /* Verify that the tree is merged */
 161        funny = 0;
 162        for (i = 0; i < entries; i++) {
 163                const struct cache_entry *ce = cache[i];
 164                if (ce_stage(ce)) {
 165                        if (silent)
 166                                return -1;
 167                        if (10 < ++funny) {
 168                                fprintf(stderr, "...\n");
 169                                break;
 170                        }
 171                        fprintf(stderr, "%s: unmerged (%s)\n",
 172                                ce->name, sha1_to_hex(ce->sha1));
 173                }
 174        }
 175        if (funny)
 176                return -1;
 177
 178        /* Also verify that the cache does not have path and path/file
 179         * at the same time.  At this point we know the cache has only
 180         * stage 0 entries.
 181         */
 182        funny = 0;
 183        for (i = 0; i < entries - 1; i++) {
 184                /* path/file always comes after path because of the way
 185                 * the cache is sorted.  Also path can appear only once,
 186                 * which means conflicting one would immediately follow.
 187                 */
 188                const char *this_name = cache[i]->name;
 189                const char *next_name = cache[i+1]->name;
 190                int this_len = strlen(this_name);
 191                if (this_len < strlen(next_name) &&
 192                    strncmp(this_name, next_name, this_len) == 0 &&
 193                    next_name[this_len] == '/') {
 194                        if (10 < ++funny) {
 195                                fprintf(stderr, "...\n");
 196                                break;
 197                        }
 198                        fprintf(stderr, "You have both %s and %s\n",
 199                                this_name, next_name);
 200                }
 201        }
 202        if (funny)
 203                return -1;
 204        return 0;
 205}
 206
 207static void discard_unused_subtrees(struct cache_tree *it)
 208{
 209        struct cache_tree_sub **down = it->down;
 210        int nr = it->subtree_nr;
 211        int dst, src;
 212        for (dst = src = 0; src < nr; src++) {
 213                struct cache_tree_sub *s = down[src];
 214                if (s->used)
 215                        down[dst++] = s;
 216                else {
 217                        cache_tree_free(&s->cache_tree);
 218                        free(s);
 219                        it->subtree_nr--;
 220                }
 221        }
 222}
 223
 224int cache_tree_fully_valid(struct cache_tree *it)
 225{
 226        int i;
 227        if (!it)
 228                return 0;
 229        if (it->entry_count < 0 || !has_sha1_file(it->sha1))
 230                return 0;
 231        for (i = 0; i < it->subtree_nr; i++) {
 232                if (!cache_tree_fully_valid(it->down[i]->cache_tree))
 233                        return 0;
 234        }
 235        return 1;
 236}
 237
 238static int update_one(struct cache_tree *it,
 239                      struct cache_entry **cache,
 240                      int entries,
 241                      const char *base,
 242                      int baselen,
 243                      int *skip_count,
 244                      int flags)
 245{
 246        struct strbuf buffer;
 247        int missing_ok = flags & WRITE_TREE_MISSING_OK;
 248        int dryrun = flags & WRITE_TREE_DRY_RUN;
 249        int to_invalidate = 0;
 250        int i;
 251
 252        *skip_count = 0;
 253
 254        if (0 <= it->entry_count && has_sha1_file(it->sha1))
 255                return it->entry_count;
 256
 257        /*
 258         * We first scan for subtrees and update them; we start by
 259         * marking existing subtrees -- the ones that are unmarked
 260         * should not be in the result.
 261         */
 262        for (i = 0; i < it->subtree_nr; i++)
 263                it->down[i]->used = 0;
 264
 265        /*
 266         * Find the subtrees and update them.
 267         */
 268        i = 0;
 269        while (i < entries) {
 270                const struct cache_entry *ce = cache[i];
 271                struct cache_tree_sub *sub;
 272                const char *path, *slash;
 273                int pathlen, sublen, subcnt, subskip;
 274
 275                path = ce->name;
 276                pathlen = ce_namelen(ce);
 277                if (pathlen <= baselen || memcmp(base, path, baselen))
 278                        break; /* at the end of this level */
 279
 280                slash = strchr(path + baselen, '/');
 281                if (!slash) {
 282                        i++;
 283                        continue;
 284                }
 285                /*
 286                 * a/bbb/c (base = a/, slash = /c)
 287                 * ==>
 288                 * path+baselen = bbb/c, sublen = 3
 289                 */
 290                sublen = slash - (path + baselen);
 291                sub = find_subtree(it, path + baselen, sublen, 1);
 292                if (!sub->cache_tree)
 293                        sub->cache_tree = cache_tree();
 294                subcnt = update_one(sub->cache_tree,
 295                                    cache + i, entries - i,
 296                                    path,
 297                                    baselen + sublen + 1,
 298                                    &subskip,
 299                                    flags);
 300                if (subcnt < 0)
 301                        return subcnt;
 302                i += subcnt;
 303                sub->count = subcnt; /* to be used in the next loop */
 304                *skip_count += subskip;
 305                sub->used = 1;
 306        }
 307
 308        discard_unused_subtrees(it);
 309
 310        /*
 311         * Then write out the tree object for this level.
 312         */
 313        strbuf_init(&buffer, 8192);
 314
 315        i = 0;
 316        while (i < entries) {
 317                const struct cache_entry *ce = cache[i];
 318                struct cache_tree_sub *sub;
 319                const char *path, *slash;
 320                int pathlen, entlen;
 321                const unsigned char *sha1;
 322                unsigned mode;
 323
 324                path = ce->name;
 325                pathlen = ce_namelen(ce);
 326                if (pathlen <= baselen || memcmp(base, path, baselen))
 327                        break; /* at the end of this level */
 328
 329                slash = strchr(path + baselen, '/');
 330                if (slash) {
 331                        entlen = slash - (path + baselen);
 332                        sub = find_subtree(it, path + baselen, entlen, 0);
 333                        if (!sub)
 334                                die("cache-tree.c: '%.*s' in '%s' not found",
 335                                    entlen, path + baselen, path);
 336                        i += sub->count;
 337                        sha1 = sub->cache_tree->sha1;
 338                        mode = S_IFDIR;
 339                        if (sub->cache_tree->entry_count < 0)
 340                                to_invalidate = 1;
 341                }
 342                else {
 343                        sha1 = ce->sha1;
 344                        mode = ce->ce_mode;
 345                        entlen = pathlen - baselen;
 346                        i++;
 347                }
 348                if (mode != S_IFGITLINK && !missing_ok && !has_sha1_file(sha1)) {
 349                        strbuf_release(&buffer);
 350                        return error("invalid object %06o %s for '%.*s'",
 351                                mode, sha1_to_hex(sha1), entlen+baselen, path);
 352                }
 353
 354                /*
 355                 * CE_REMOVE entries are removed before the index is
 356                 * written to disk. Skip them to remain consistent
 357                 * with the future on-disk index.
 358                 */
 359                if (ce->ce_flags & CE_REMOVE) {
 360                        *skip_count = *skip_count + 1;
 361                        continue;
 362                }
 363
 364                /*
 365                 * CE_INTENT_TO_ADD entries exist on on-disk index but
 366                 * they are not part of generated trees. Invalidate up
 367                 * to root to force cache-tree users to read elsewhere.
 368                 */
 369                if (ce->ce_flags & CE_INTENT_TO_ADD) {
 370                        to_invalidate = 1;
 371                        continue;
 372                }
 373
 374                strbuf_grow(&buffer, entlen + 100);
 375                strbuf_addf(&buffer, "%o %.*s%c", mode, entlen, path + baselen, '\0');
 376                strbuf_add(&buffer, sha1, 20);
 377
 378#if DEBUG
 379                fprintf(stderr, "cache-tree update-one %o %.*s\n",
 380                        mode, entlen, path + baselen);
 381#endif
 382        }
 383
 384        if (dryrun)
 385                hash_sha1_file(buffer.buf, buffer.len, tree_type, it->sha1);
 386        else if (write_sha1_file(buffer.buf, buffer.len, tree_type, it->sha1)) {
 387                strbuf_release(&buffer);
 388                return -1;
 389        }
 390
 391        strbuf_release(&buffer);
 392        it->entry_count = to_invalidate ? -1 : i - *skip_count;
 393#if DEBUG
 394        fprintf(stderr, "cache-tree update-one (%d ent, %d subtree) %s\n",
 395                it->entry_count, it->subtree_nr,
 396                sha1_to_hex(it->sha1));
 397#endif
 398        return i;
 399}
 400
 401int cache_tree_update(struct index_state *istate, int flags)
 402{
 403        struct cache_tree *it = istate->cache_tree;
 404        struct cache_entry **cache = istate->cache;
 405        int entries = istate->cache_nr;
 406        int skip, i = verify_cache(cache, entries, flags);
 407
 408        if (i)
 409                return i;
 410        i = update_one(it, cache, entries, "", 0, &skip, flags);
 411        if (i < 0)
 412                return i;
 413        istate->cache_changed |= CACHE_TREE_CHANGED;
 414        return 0;
 415}
 416
 417static void write_one(struct strbuf *buffer, struct cache_tree *it,
 418                      const char *path, int pathlen)
 419{
 420        int i;
 421
 422        /* One "cache-tree" entry consists of the following:
 423         * path (NUL terminated)
 424         * entry_count, subtree_nr ("%d %d\n")
 425         * tree-sha1 (missing if invalid)
 426         * subtree_nr "cache-tree" entries for subtrees.
 427         */
 428        strbuf_grow(buffer, pathlen + 100);
 429        strbuf_add(buffer, path, pathlen);
 430        strbuf_addf(buffer, "%c%d %d\n", 0, it->entry_count, it->subtree_nr);
 431
 432#if DEBUG
 433        if (0 <= it->entry_count)
 434                fprintf(stderr, "cache-tree <%.*s> (%d ent, %d subtree) %s\n",
 435                        pathlen, path, it->entry_count, it->subtree_nr,
 436                        sha1_to_hex(it->sha1));
 437        else
 438                fprintf(stderr, "cache-tree <%.*s> (%d subtree) invalid\n",
 439                        pathlen, path, it->subtree_nr);
 440#endif
 441
 442        if (0 <= it->entry_count) {
 443                strbuf_add(buffer, it->sha1, 20);
 444        }
 445        for (i = 0; i < it->subtree_nr; i++) {
 446                struct cache_tree_sub *down = it->down[i];
 447                if (i) {
 448                        struct cache_tree_sub *prev = it->down[i-1];
 449                        if (subtree_name_cmp(down->name, down->namelen,
 450                                             prev->name, prev->namelen) <= 0)
 451                                die("fatal - unsorted cache subtree");
 452                }
 453                write_one(buffer, down->cache_tree, down->name, down->namelen);
 454        }
 455}
 456
 457void cache_tree_write(struct strbuf *sb, struct cache_tree *root)
 458{
 459        write_one(sb, root, "", 0);
 460}
 461
 462static struct cache_tree *read_one(const char **buffer, unsigned long *size_p)
 463{
 464        const char *buf = *buffer;
 465        unsigned long size = *size_p;
 466        const char *cp;
 467        char *ep;
 468        struct cache_tree *it;
 469        int i, subtree_nr;
 470
 471        it = NULL;
 472        /* skip name, but make sure name exists */
 473        while (size && *buf) {
 474                size--;
 475                buf++;
 476        }
 477        if (!size)
 478                goto free_return;
 479        buf++; size--;
 480        it = cache_tree();
 481
 482        cp = buf;
 483        it->entry_count = strtol(cp, &ep, 10);
 484        if (cp == ep)
 485                goto free_return;
 486        cp = ep;
 487        subtree_nr = strtol(cp, &ep, 10);
 488        if (cp == ep)
 489                goto free_return;
 490        while (size && *buf && *buf != '\n') {
 491                size--;
 492                buf++;
 493        }
 494        if (!size)
 495                goto free_return;
 496        buf++; size--;
 497        if (0 <= it->entry_count) {
 498                if (size < 20)
 499                        goto free_return;
 500                hashcpy(it->sha1, (const unsigned char*)buf);
 501                buf += 20;
 502                size -= 20;
 503        }
 504
 505#if DEBUG
 506        if (0 <= it->entry_count)
 507                fprintf(stderr, "cache-tree <%s> (%d ent, %d subtree) %s\n",
 508                        *buffer, it->entry_count, subtree_nr,
 509                        sha1_to_hex(it->sha1));
 510        else
 511                fprintf(stderr, "cache-tree <%s> (%d subtrees) invalid\n",
 512                        *buffer, subtree_nr);
 513#endif
 514
 515        /*
 516         * Just a heuristic -- we do not add directories that often but
 517         * we do not want to have to extend it immediately when we do,
 518         * hence +2.
 519         */
 520        it->subtree_alloc = subtree_nr + 2;
 521        it->down = xcalloc(it->subtree_alloc, sizeof(struct cache_tree_sub *));
 522        for (i = 0; i < subtree_nr; i++) {
 523                /* read each subtree */
 524                struct cache_tree *sub;
 525                struct cache_tree_sub *subtree;
 526                const char *name = buf;
 527
 528                sub = read_one(&buf, &size);
 529                if (!sub)
 530                        goto free_return;
 531                subtree = cache_tree_sub(it, name);
 532                subtree->cache_tree = sub;
 533        }
 534        if (subtree_nr != it->subtree_nr)
 535                die("cache-tree: internal error");
 536        *buffer = buf;
 537        *size_p = size;
 538        return it;
 539
 540 free_return:
 541        cache_tree_free(&it);
 542        return NULL;
 543}
 544
 545struct cache_tree *cache_tree_read(const char *buffer, unsigned long size)
 546{
 547        if (buffer[0])
 548                return NULL; /* not the whole tree */
 549        return read_one(&buffer, &size);
 550}
 551
 552static struct cache_tree *cache_tree_find(struct cache_tree *it, const char *path)
 553{
 554        if (!it)
 555                return NULL;
 556        while (*path) {
 557                const char *slash;
 558                struct cache_tree_sub *sub;
 559
 560                slash = strchrnul(path, '/');
 561                /*
 562                 * Between path and slash is the name of the subtree
 563                 * to look for.
 564                 */
 565                sub = find_subtree(it, path, slash - path, 0);
 566                if (!sub)
 567                        return NULL;
 568                it = sub->cache_tree;
 569
 570                path = slash;
 571                while (*path == '/')
 572                        path++;
 573        }
 574        return it;
 575}
 576
 577int write_cache_as_tree(unsigned char *sha1, int flags, const char *prefix)
 578{
 579        int entries, was_valid, newfd;
 580        struct lock_file *lock_file;
 581
 582        /*
 583         * We can't free this memory, it becomes part of a linked list
 584         * parsed atexit()
 585         */
 586        lock_file = xcalloc(1, sizeof(struct lock_file));
 587
 588        newfd = hold_locked_index(lock_file, 1);
 589
 590        entries = read_cache();
 591        if (entries < 0)
 592                return WRITE_TREE_UNREADABLE_INDEX;
 593        if (flags & WRITE_TREE_IGNORE_CACHE_TREE)
 594                cache_tree_free(&(active_cache_tree));
 595
 596        if (!active_cache_tree)
 597                active_cache_tree = cache_tree();
 598
 599        was_valid = cache_tree_fully_valid(active_cache_tree);
 600        if (!was_valid) {
 601                if (cache_tree_update(&the_index, flags) < 0)
 602                        return WRITE_TREE_UNMERGED_INDEX;
 603                if (0 <= newfd) {
 604                        if (!write_locked_index(&the_index, lock_file, COMMIT_LOCK))
 605                                newfd = -1;
 606                }
 607                /* Not being able to write is fine -- we are only interested
 608                 * in updating the cache-tree part, and if the next caller
 609                 * ends up using the old index with unupdated cache-tree part
 610                 * it misses the work we did here, but that is just a
 611                 * performance penalty and not a big deal.
 612                 */
 613        }
 614
 615        if (prefix) {
 616                struct cache_tree *subtree =
 617                        cache_tree_find(active_cache_tree, prefix);
 618                if (!subtree)
 619                        return WRITE_TREE_PREFIX_ERROR;
 620                hashcpy(sha1, subtree->sha1);
 621        }
 622        else
 623                hashcpy(sha1, active_cache_tree->sha1);
 624
 625        if (0 <= newfd)
 626                rollback_lock_file(lock_file);
 627
 628        return 0;
 629}
 630
 631static void prime_cache_tree_rec(struct cache_tree *it, struct tree *tree)
 632{
 633        struct tree_desc desc;
 634        struct name_entry entry;
 635        int cnt;
 636
 637        hashcpy(it->sha1, tree->object.sha1);
 638        init_tree_desc(&desc, tree->buffer, tree->size);
 639        cnt = 0;
 640        while (tree_entry(&desc, &entry)) {
 641                if (!S_ISDIR(entry.mode))
 642                        cnt++;
 643                else {
 644                        struct cache_tree_sub *sub;
 645                        struct tree *subtree = lookup_tree(entry.sha1);
 646                        if (!subtree->object.parsed)
 647                                parse_tree(subtree);
 648                        sub = cache_tree_sub(it, entry.path);
 649                        sub->cache_tree = cache_tree();
 650                        prime_cache_tree_rec(sub->cache_tree, subtree);
 651                        cnt += sub->cache_tree->entry_count;
 652                }
 653        }
 654        it->entry_count = cnt;
 655}
 656
 657void prime_cache_tree(struct index_state *istate, struct tree *tree)
 658{
 659        cache_tree_free(&istate->cache_tree);
 660        istate->cache_tree = cache_tree();
 661        prime_cache_tree_rec(istate->cache_tree, tree);
 662        istate->cache_changed |= CACHE_TREE_CHANGED;
 663}
 664
 665/*
 666 * find the cache_tree that corresponds to the current level without
 667 * exploding the full path into textual form.  The root of the
 668 * cache tree is given as "root", and our current level is "info".
 669 * (1) When at root level, info->prev is NULL, so it is "root" itself.
 670 * (2) Otherwise, find the cache_tree that corresponds to one level
 671 *     above us, and find ourselves in there.
 672 */
 673static struct cache_tree *find_cache_tree_from_traversal(struct cache_tree *root,
 674                                                         struct traverse_info *info)
 675{
 676        struct cache_tree *our_parent;
 677
 678        if (!info->prev)
 679                return root;
 680        our_parent = find_cache_tree_from_traversal(root, info->prev);
 681        return cache_tree_find(our_parent, info->name.path);
 682}
 683
 684int cache_tree_matches_traversal(struct cache_tree *root,
 685                                 struct name_entry *ent,
 686                                 struct traverse_info *info)
 687{
 688        struct cache_tree *it;
 689
 690        it = find_cache_tree_from_traversal(root, info);
 691        it = cache_tree_find(it, ent->path);
 692        if (it && it->entry_count > 0 && !hashcmp(ent->sha1, it->sha1))
 693                return it->entry_count;
 694        return 0;
 695}
 696
 697int update_main_cache_tree(int flags)
 698{
 699        if (!the_index.cache_tree)
 700                the_index.cache_tree = cache_tree();
 701        return cache_tree_update(&the_index, flags);
 702}