methods / methods-collated.texon commit [spec] rm arrows on asymptotes (09473cb)
   1\documentclass[a4paper]{article}
   2\usepackage{standalone}
   3\usepackage{newclude}
   4\usepackage[a4paper,margin=2cm]{geometry}
   5\usepackage{multicol}
   6\usepackage{multirow}
   7\usepackage{amsmath}
   8\usepackage{amssymb}
   9\usepackage{harpoon}
  10\usepackage{tabularx}
  11\usepackage{tabu}
  12\usepackage{makecell}
  13\usepackage[dvipsnames, table]{xcolor}
  14\usepackage{blindtext}
  15\usepackage{graphicx}
  16\usepackage{wrapfig}
  17\usepackage{tikz}
  18\usepackage{tikz-3dplot}
  19\usepackage{pgfplots}
  20\pgfplotsset{compat=1.8}
  21\usepackage{mathtools}
  22\usetikzlibrary{calc}
  23\usetikzlibrary{angles}
  24\usetikzlibrary{datavisualization.formats.functions}
  25\usetikzlibrary{decorations.markings}
  26\usepgflibrary{arrows.meta}
  27\usepackage{longtable}
  28\usepackage{fancyhdr}
  29\pagestyle{fancy}
  30\fancyhead[LO,LE]{Year 12 Methods}
  31\fancyhead[CO,CE]{Andrew Lorimer}
  32\fancypagestyle{plain}{\fancyhead[LO,LE]{} \fancyhead[CO,CE]{}} % rm title & author for first page
  33\providecommand{\tightlist}{\setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}
  34\setlength{\parindent}{0cm}
  35\usepackage{mathtools}
  36\usepackage{xcolor} % used only to show the phantomed stuff
  37\setlength\fboxsep{0pt} \setlength\fboxrule{.2pt} % for the \fboxes
  38\newcommand*\leftlap[3][\,]{#1\hphantom{#2}\mathllap{#3}}
  39\newcommand*\rightlap[2]{\mathrlap{#2}\hphantom{#1}}
  40\newcolumntype{L}[1]{>{\hsize=#1\hsize\raggedright\arraybackslash}X}
  41\newcolumntype{R}[1]{>{\hsize=#1\hsize\raggedleft\arraybackslash}X}
  42\definecolor{cas}{HTML}{e6f0fe}
  43\definecolor{shade1}{HTML}{ffffff}
  44\definecolor{shade2}{HTML}{e6f2ff}
  45\definecolor{shade3}{HTML}{cce2ff}
  46\linespread{1.5}
  47\newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);}
  48\newcommand{\tg}{\mathop{\mathrm{tg}}}
  49\newcommand{\cotg}{\mathop{\mathrm{cotg}}}
  50\newcommand{\arctg}{\mathop{\mathrm{arctg}}}
  51\newcommand{\arccotg}{\mathop{\mathrm{arccotg}}}
  52\pgfplotsset{every axis/.append style={
  53  axis x line=middle,    % centre axes
  54  axis y line=middle,
  55  axis line style={->},  % arrows on axes
  56  xlabel={$x$},          % axes labels
  57  ylabel={$y$},
  58}}
  59
  60\begin{document}
  61
  62\title{\vspace{-20mm}Year 12 Methods}
  63\author{Andrew Lorimer}
  64\date{}
  65\maketitle
  66
  67\begin{multicols}{2}
  68
  69  \section{Functions}
  70
  71  \begin{itemize}
  72      \tightlist
  73    \item vertical line test
  74    \item each \(x\) value produces only one \(y\) value
  75  \end{itemize}
  76
  77  \subsection*{One to one functions}
  78
  79  \begin{itemize} \tightlist
  80    \item
  81      \(f(x)\) is \emph{one to one} if \(f(a) \ne f(b)\) if
  82      \(a, b \in \operatorname{dom}(f)\) and \(a \ne b\)\\
  83      \(\implies\) unique \(y\) for each \(x\) (\(\sin x\) is not 1:1,
  84      \(x^3\) is)
  85    \item
  86      horizontal line test
  87    \item
  88      if not one to one, it is many to one
  89  \end{itemize}
  90
  91      \subsection*{Odd and even functions}
  92
  93      \begin{align*}
  94        \text{Even:}&& f(x)  &= f(-x) \\
  95        \text{Odd:} && -f(x) &= f(-x)
  96      \end{align*}
  97
  98      Even \(\implies\) symmetrical across \(y\)-axis \\
  99      \(x^{\pm {p \over q}}\) is odd if \(q\) is odd\\
 100      For \(x^n\), parity of \(n \equiv\) parity of function
 101
 102      \begin{tabularx}{\columnwidth}{XX}
 103        \textbf{Even:} & \textbf{Odd:} \\
 104        \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3,  xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^2)};  \end{axis}\end{tikzpicture} &
 105          \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3,  xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^3)};  \end{axis}\end{tikzpicture}
 106      \end{tabularx}
 107
 108  \subsection*{Inverse functions}
 109
 110  \begin{itemize} \tightlist
 111    \item Inverse of \(f(x)\) is denoted \(f^{-1}(x)\)
 112    \item \(f\) must be one to one
 113    \item If \(f(g(x)) = x\), then \(g\) is the inverse of \(f\)
 114    \item Represents reflection across \(y=x\)
 115    \item \(\implies f^{-1}(x)=f(x)\) intersections lie on \(y=x\)
 116    \item \(\operatorname{ran} \> f = \operatorname{dom} \> f^{-1} \\
 117      \operatorname{dom} \> f = \operatorname{ran} \> f^{-1}\)
 118    \item ``Inverse'' \(\ne\) ``inverse \emph{function}'' (functions must pass vertical line test)\\
 119  \end{itemize}
 120
 121  \subsubsection*{Finding \(f^{-1}\)}
 122
 123  \begin{enumerate} \tightlist
 124    \item Let \(y=f(x)\)
 125    \item Swap \(x\) and \(y\) (``take inverse''
 126    \item Solve for \(y\) \\
 127      Sqrt: state \(\pm\) solutions then restrict
 128    \item State rule as \(f^{-1}(x)=\dots\)
 129    \item For inverse \emph{function}, state in function notation
 130  \end{enumerate}
 131      
 132  \subsection*{Simultaneous equations (linear)}
 133
 134  \begin{itemize} \tightlist
 135    \item \textbf{Unique solution} - lines intersect at point
 136    \item \textbf{Infinitely many solutions} - lines are equal
 137    \item \textbf{No solution} - lines are parallel
 138  \end{itemize}
 139
 140  \subsubsection*{Solving \(\protect\begin{cases}px + qy = a \\ rx + sy = b\protect\end{cases} \>\) for \(\{0,1,\infty\}\) solutions}
 141    where all coefficients are known except for one, and \(a, b\) are known
 142
 143    \begin{enumerate} \tightlist
 144      \item Write as matrices: \(\begin{bmatrix}p & q \\ r & s \end{bmatrix}  \begin{bmatrix} x \\ y \end{bmatrix}  =  \begin{bmatrix} a \\ b \end{bmatrix}\)
 145        \item Find determinant of first matrix: \(\Delta = ps-qr\)
 146        \item Let \(\Delta = 0\) for number of solutions \(\ne 1\)\\
 147          or let \(\Delta \ne 0\) for one unique solution.
 148        \item Solve determinant equation to find variable \\
 149          \textbf{For infinite/no solutions:}
 150        \item Substitute variable into both original equations
 151        \item Rearrange equations so that LHS of each is the same
 152        \item \(\text{RHS}(1) = \text{RHS}(2) \implies (1)=(2) \> \forall x\) (\(\infty\) solns)\\
 153          \(\text{RHS}(1) \ne \text{RHS}(2) \implies (1)\ne(2) \> \forall x\) (0 solns)
 154    \end{enumerate}
 155
 156    \colorbox{cas}{On CAS:} Matrix \(\rightarrow\) \texttt{det}
 157
 158    \subsubsection*{Solving \(\protect\begin{cases}a_1 x + b_1 y + c_1 z = d_1 \\ a_2 x + b_2 y + c_2 z = d_2 \\ a_3 x + b_3 y + c_3 z = d_3\protect\end{cases}\)}
 159
 160      \begin{itemize} \tightlist
 161        \item Use elimination
 162        \item Generate two new equations with only two variables
 163        \item Rearrange \& solve
 164        \item Substitute one variable into another equation to find another variable
 165      \end{itemize}
 166
 167\subsection*{Piecewise functions}
 168
 169\[\text{e.g.} \quad f(x) = \begin{cases} x^{1 / 3}, \hspace{2em} x \le 0 \\ 2, \hspace{3.4em} 0 < x < 2 \\ x, \hspace{3.4em} x \ge 2 \end{cases}\]
 170
 171\textbf{Open circle:} point included\\
 172\textbf{Closed circle:} point not included
 173
 174\subsection*{Operations on functions}
 175
 176For \(f \pm g\) and \(f \times g\):
 177\quad \(\text{dom}^\prime = \operatorname{dom}(f) \cap \operatorname{dom}(g)\)
 178
 179Addition of linear piecewise graphs: add \(y\)-values at key points
 180
 181Product functions:
 182
 183\begin{itemize}
 184\tightlist
 185\item
 186  product will equal 0 if \(f=0\) or \(g=0\)
 187\item
 188  \(f^\prime(x)=0 \veebar g^\prime(x)=0 \not\Rightarrow (f \times g)^\prime(x)=0\)
 189\end{itemize}
 190
 191\subsection*{Composite functions}
 192
 193\((f \circ g)(x)\) is defined iff
 194\(\operatorname{ran}(g) \subseteq \operatorname{dom}(f)\)
 195
 196
 197      \pgfplotsset{every axis/.append style={ ticks=none, xlabel=, ylabel=, }} % remove axis labels & ticks
 198      \begin{table*}[ht]
 199        \centering
 200        \begin{tabu} to \textwidth {@{} X[0.3,r] *2{|X[c,m]}@{}}
 201          & \(n\) is even & \(n\) is odd \\ \tabucline{1pt} 
 202          \(x^n, n \in \mathbb{Z}^+\) & 
 203          \vspace{1em}\begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-3,  xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[orange, mark=none] {(x^2)};  \end{axis}\end{tikzpicture} &
 204            \begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-3,  xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[orange, mark=none] {(x^3)};  \end{axis}\end{tikzpicture} \\
 205              \(x^n, n \in \mathbb{Z}^-\) &
 206              \begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-4,  xmax=4, ymax=8, ymin=-0, scale=0.4, smooth] \addplot[orange, mark=none, samples=100] {(x^(-2))};  \end{axis}\end{tikzpicture} &
 207                \begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-3,  xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[orange, mark=none, domain=-3:-0.1] {(x^(-1))}; \addplot[orange, mark=none, domain=0.1:3] {(x^(-1))};  \end{axis}\end{tikzpicture} \\
 208                  \(x^{\frac{1}{n}}, n \in \mathbb{Z}^-\) &
 209                  \begin{tikzpicture}\begin{axis}[yticklabels={,,}, xticklabels={,,}, xmin=-1,  xmax=5, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[orange, mark=none] {(x^(1/2))};  \end{axis}\end{tikzpicture} &
 210                    \begin{tikzpicture}
 211                      \begin{axis}[enlargelimits=false, yticklabels={,,}, xticklabels={,,}, xmin=-3, xmax=3, ymin=-3, ymax=3, smooth, scale=0.4]
 212                        \addplot [orange,domain=-2:2,samples=1000,no markers] gnuplot[id=poly]{sgn(x)*(abs(x)**(1./3)) };
 213                      \end{axis}
 214                    \end{tikzpicture}
 215        \end{tabu}
 216        \hrule
 217      \end{table*}
 218      \pgfplotsset{every axis/.append style={ xlabel=\(x\), ylabel=\(y\) }} % put axis labels back
 219
 220      \section{Polynomials}
 221
 222      \subsection*{Linear equations}
 223
 224      \subsubsection*{Forms}
 225
 226      \begin{itemize}
 227          \tightlist
 228        \item \(y=mx+c\)
 229        \item \(\frac{x}{a} + \frac{y}{b}=1\) where \((x_1, y_1)\) lies on the graph
 230        \item \(y-y_1 = m(x-x_1)\) where \((a,0)\) and \((0,b)\) are \(x\)- and \(y\)-intercepts
 231      \end{itemize}
 232
 233      \subsubsection*{Line properties}
 234
 235      Parallel lines: \(m_1 = m_2\)\\
 236      Perpendicular lines: \(m_1 \times m_2 = -1\)\\
 237      Distance: \(|\vec{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)
 238
 239      \subsection*{Quadratics}
 240      \setlength{\abovedisplayskip}{1pt}
 241      \setlength{\belowdisplayskip}{1pt}
 242      \[ x^2 + bx + c = (x+m)(x+n) \]
 243      \hfill where \(mn=c, \> m+n=b\)
 244
 245      \textbf{Difference of squares}
 246      \[ a^2 - b^2 = (a-b)(a+b) \]
 247      \textbf{Perfect squares}
 248      \[ a^2 \pm 2ab + b^2 = (a \pm b^2) \]
 249      \textbf{Completing the square}
 250      \begin{align*}
 251        x^2+bx+c &= (x+\frac{b}{2})^2+c-\frac{b^2}{4} \\
 252        ax^2+bx+c &= a(x-\frac{b}{2a})^2+c-\frac{b^2}{4a}
 253      \end{align*}
 254      \textbf{Quadratic formula}
 255      \[ x = \dfrac{-b\pm\sqrt{b^2-4ac}}{2a} \]
 256      \hfill (Discriminant \(\Delta=b^2-4ac\))
 257
 258      \subsection*{Cubics}
 259
 260      \textbf{Difference of cubes}
 261      \[ a^3 - b^3 = (a-b)(a^2 + ab + b^2) \]
 262      \textbf{Sum of cubes}
 263      \[ a^3 + b^3 = (a+b)(a^2 - ab + b^2) \]
 264      \textbf{Perfect cubes}
 265      \[ a^3 \pm 3a^2b + 3ab^2 \pm b^3 = (a \pm b)^3 \]
 266
 267      \[ y=a(bx-h)^3 + c \]
 268
 269      \begin{itemize}
 270          \tightlist
 271        \item
 272          \(m=0\) at \emph{stationary point of inflection}
 273          (i.e.~(\({h \over b}, k)\))
 274        \item \(y=(x-a)^2(x-b)\) --- max at \(x=a\), min at \(x=b\)
 275        \item \(y=a(x-b)(x-c)(x-d)\) --- roots at \(b, c, d\)
 276        \item \(y=a(x-b)^2(x-c)\) --- roots at \(b\) (instantaneous), \(c\) (intercept)
 277      \end{itemize}
 278
 279      \subsection*{Quartic graphs}
 280
 281      \subsubsection*{Forms of quartic equations}
 282
 283      \(y=ax^4\)\\
 284      \(y=a(x-b)(x-c)(x-d)(x-e)\)\\
 285      \(y=ax^4+cd^2 (c \ge 0)\)\\
 286      \(y=ax^2(x-b)(x-c)\)\\
 287      \(y=a(x-b)^2(x-c)^2\)\\
 288      \(y=a(x-b)(x-c)^3\)
 289
 290      \input{transformations}
 291      \input{stuff}
 292      \input{circ-functions}
 293      \input{calculus}
 294
 295    \end{multicols}
 296  \end{document}