methods / methods-collated.texon commit [spec] clean up (0db1737)
   1\documentclass[a4paper]{article}
   2\usepackage[dvipsnames, table]{xcolor}
   3\usepackage{adjustbox}
   4\usepackage{amsmath}
   5\usepackage{amssymb}
   6\usepackage{blindtext}
   7\usepackage{dblfloatfix}
   8\usepackage{enumitem}
   9\usepackage{fancyhdr}
  10\usepackage[a4paper,margin=2cm]{geometry}
  11\usepackage{graphicx}
  12\usepackage{harpoon}
  13\usepackage{listings}
  14\usepackage{makecell}
  15\usepackage{mathtools}
  16\usepackage{mathtools}
  17\usepackage{multicol}
  18\usepackage{multirow}
  19\usepackage{newclude}
  20\usepackage{pgfplots}
  21\usepackage{pst-plot}
  22\usepackage{standalone}
  23\usepackage{subfiles}
  24\usepackage{tabularx}
  25\usepackage{tabu}
  26\usepackage{tcolorbox}
  27\usepackage{tikz-3dplot}
  28\usepackage{tikz}
  29\usepackage{tkz-fct}
  30\usepackage[obeyspaces]{url}
  31\usepackage{wrapfig}
  32
  33
  34\usetikzlibrary{%
  35  angles,
  36  arrows,
  37  arrows.meta,
  38  calc,
  39  datavisualization.formats.functions,
  40  decorations,
  41  decorations.markings,
  42  decorations.text,
  43  decorations.pathreplacing,
  44  decorations.text,
  45  scopes
  46}
  47
  48\newcommand{\midarrow}{\tikz \draw[-triangle 90] (0,0) -- +(.1,0);}
  49
  50\usepgflibrary{arrows.meta}
  51\pgfplotsset{compat=1.16}
  52\pgfplotsset{every axis/.append style={
  53  axis x line=middle,    % centre axes
  54  axis y line=middle,
  55  axis line style={->},  % arrows on axes
  56  xlabel={$x$},          % axes labels
  57  ylabel={$y$}
  58}}
  59
  60\psset{dimen=monkey,fillstyle=solid,opacity=.5}
  61\def\object{%
  62    \psframe[linestyle=none,fillcolor=blue](-2,-1)(2,1)
  63    \psaxes[linecolor=gray,labels=none,ticks=none]{->}(0,0)(-3,-3)(3,2)[$x$,0][$y$,90]
  64    \rput{*0}{%
  65        \psline{->}(0,-2)%
  66        \uput[-90]{*0}(0,-2){$\vec{w}$}}
  67}
  68
  69\pagestyle{fancy}
  70\fancyhead[LO,LE]{Year 12 Methods}
  71\fancyhead[CO,CE]{Andrew Lorimer}
  72\fancypagestyle{plain}{\fancyhead[LO,LE]{} \fancyhead[CO,CE]{}} % rm title & author for first page
  73
  74\newcommand{\tg}{\mathop{\mathrm{tg}}}
  75\newcommand{\cotg}{\mathop{\mathrm{cotg}}}
  76\newcommand{\arctg}{\mathop{\mathrm{arctg}}}
  77\newcommand{\arccotg}{\mathop{\mathrm{arccotg}}}
  78
  79\providecommand{\tightlist}{\setlength{\itemsep}{0pt}\setlength{\parskip}{0pt}}
  80\newcommand*\leftlap[3][\,]{#1\hphantom{#2}\mathllap{#3}}
  81\newcommand*\rightlap[2]{\mathrlap{#2}\hphantom{#1}}
  82\linespread{1.5}
  83\setlength{\parindent}{0cm}
  84\setlength\fboxsep{0pt} \setlength\fboxrule{.2pt} % for the \fboxes
  85
  86\newcolumntype{L}[1]{>{\hsize=#1\hsize\raggedright\arraybackslash}X}
  87\newcolumntype{R}[1]{>{\hsize=#1\hsize\raggedleft\arraybackslash}X}
  88\newcolumntype{Y}{>{\centering\arraybackslash}X}
  89
  90\definecolor{cas}{HTML}{e6f0fe}
  91\definecolor{important}{HTML}{fc9871}
  92\definecolor{dark-gray}{gray}{0.2}
  93\definecolor{orange}{HTML}{e6beb2}
  94\definecolor{lblue}{HTML}{e5e9f0}
  95
  96\newtcolorbox{cas}{colframe=cas!75!black, title=On CAS, left*=3mm}
  97\newtcolorbox{warning}{colback=white!90!black, leftrule=3mm, colframe=important, coltext=important, fontupper=\sffamily\bfseries}
  98
  99
 100\begin{document}
 101
 102\title{\vspace{-20mm}Year 12 Methods}
 103\author{Andrew Lorimer}
 104\date{}
 105\maketitle
 106
 107\begin{multicols}{2}
 108
 109
 110\section{Functions}
 111
 112\begin{itemize} \tightlist
 113  \item vertical line test
 114  \item each \(x\) value produces only one \(y\) value
 115\end{itemize}
 116
 117\subsection*{One to one functions}
 118
 119\begin{itemize} \tightlist
 120  \item
 121    \(f(x)\) is \emph{one to one} if \(f(a) \ne f(b)\) if
 122    \(a, b \in \operatorname{dom}(f)\) and \(a \ne b\)\\
 123    \(\implies\) unique \(y\) for each \(x\) (\(\sin x\) is not 1:1,
 124    \(x^3\) is)
 125  \item
 126    horizontal line test
 127  \item
 128    if not one to one, it is many to one
 129\end{itemize}
 130
 131\subsection*{Odd and even functions}
 132
 133\begin{align*}
 134  \text{Even:}&& f(x)  &= f(-x) \\
 135  \text{Odd:} && -f(x) &= f(-x)
 136\end{align*}
 137
 138Even \(\implies\) symmetrical across \(y\)-axis \\
 139\(x^{\pm {p \over q}}\) is odd if \(q\) is odd\\
 140For \(x^n\), parity of \(n \equiv\) parity of function
 141
 142\begin{tabularx}{\columnwidth}{XX}
 143  \textbf{Even:} & \textbf{Odd:} \\
 144  \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3,  xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^2)};  \end{axis}\end{tikzpicture} &
 145    \begin{tikzpicture}\begin{axis}[ticks=none, yticklabels={,,}, xticklabels={,,}, xmin=-3,  xmax=3, scale=0.4, samples=100, smooth, unbounded coords=jump] \addplot[blue, mark=none] {(x^3)};  \end{axis}\end{tikzpicture}
 146\end{tabularx}
 147
 148\subsection*{Inverse functions}
 149
 150\begin{itemize} \tightlist
 151  \item Inverse of \(f(x)\) is denoted \(f^{-1}(x)\)
 152  \item \(f\) must be one to one
 153  \item If \(f(g(x)) = x\), then \(g\) is the inverse of \(f\)
 154  \item Represents reflection across \(y=x\)
 155  \item \(\implies f^{-1}(x)=f(x)\) intersections lie on \(y=x\)
 156  \item \(\operatorname{ran} \> f = \operatorname{dom} \> f^{-1} \\
 157    \operatorname{dom} \> f = \operatorname{ran} \> f^{-1}\)
 158  \item ``Inverse'' \(\ne\) ``inverse \emph{function}'' (functions must pass vertical line test)\\
 159\end{itemize}
 160
 161\subsubsection*{Finding \(f^{-1}\)}
 162
 163\begin{enumerate} \tightlist
 164  \item Let \(y=f(x)\)
 165  \item Swap \(x\) and \(y\) (``take inverse''
 166  \item Solve for \(y\) \\
 167    Sqrt: state \(\pm\) solutions then restrict
 168  \item State rule as \(f^{-1}(x)=\dots\)
 169  \item For inverse \emph{function}, state in function notation
 170\end{enumerate}
 171
 172\subsection*{Simultaneous equations (linear)}
 173
 174\begin{itemize} \tightlist
 175  \item \textbf{Unique solution} - lines intersect at point
 176  \item \textbf{Infinitely many solutions} - lines are equal
 177  \item \textbf{No solution} - lines are parallel
 178\end{itemize}
 179
 180\subsubsection*{Solving \(\protect\begin{cases}px + qy = a \\ rx + sy = b\protect\end{cases} \>\) for \(\{0,1,\infty\}\) solutions}
 181  where all coefficients are known except for one, and \(a, b\) are known
 182
 183  \begin{enumerate} \tightlist
 184    \item Write as matrices: \(\begin{bmatrix}p & q \\ r & s \end{bmatrix}  \begin{bmatrix} x \\ y \end{bmatrix}  =  \begin{bmatrix} a \\ b \end{bmatrix}\)
 185      \item Find determinant of first matrix: \(\Delta = ps-qr\)
 186      \item Let \(\Delta = 0\) for number of solutions \(\ne 1\)\\
 187        or let \(\Delta \ne 0\) for one unique solution.
 188      \item Solve determinant equation to find variable \\
 189        \textbf{For infinite/no solutions:}
 190      \item Substitute variable into both original equations
 191      \item Rearrange equations so that LHS of each is the same
 192      \item \(\text{RHS}(1) = \text{RHS}(2) \implies (1)=(2) \> \forall x\) (\(\infty\) solns)\\
 193        \(\text{RHS}(1) \ne \text{RHS}(2) \implies (1)\ne(2) \> \forall x\) (0 solns)
 194  \end{enumerate}
 195
 196  \colorbox{cas}{On CAS:} Matrix \(\rightarrow\) \texttt{det}
 197
 198  \subsubsection*{Solving \(\protect\begin{cases}a_1 x + b_1 y + c_1 z = d_1 \\ a_2 x + b_2 y + c_2 z = d_2 \\ a_3 x + b_3 y + c_3 z = d_3\protect\end{cases}\)}
 199
 200    \begin{itemize} \tightlist
 201      \item Use elimination
 202      \item Generate two new equations with only two variables
 203      \item Rearrange \& solve
 204      \item Substitute one variable into another equation to find another variable
 205    \end{itemize}
 206
 207    \subsection*{Piecewise functions}
 208
 209    \[\text{e.g.} \quad f(x) = \begin{cases} x^{1 / 3}, \hspace{2em} x \le 0 \\ 2, \hspace{3.4em} 0 < x < 2 \\ x, \hspace{3.4em} x \ge 2 \end{cases}\]
 210
 211      \textbf{Open circle:} point included\\
 212      \textbf{Closed circle:} point not included
 213
 214      \subsection*{Operations on functions}
 215
 216      For \(f \pm g\) and \(f \times g\):
 217      \quad \(\text{dom}^\prime = \operatorname{dom}(f) \cap \operatorname{dom}(g)\)
 218
 219      Addition of linear piecewise graphs: add \(y\)-values at key points
 220
 221      Product functions:
 222
 223      \begin{itemize}
 224          \tightlist
 225        \item
 226          product will equal 0 if \(f=0\) or \(g=0\)
 227        \item
 228          \(f^\prime(x)=0 \veebar g^\prime(x)=0 \not\Rightarrow (f \times g)^\prime(x)=0\)
 229      \end{itemize}
 230
 231      \subsection*{Composite functions}
 232
 233      \((f \circ g)(x)\) is defined iff
 234      \(\operatorname{ran}(g) \subseteq \operatorname{dom}(f)\)
 235
 236      \pgfplotsset{
 237        blank/.append style={%
 238          enlargelimits=true,
 239          ticks=none,
 240          yticklabels={,,}, xticklabels={,,},
 241          xlabel=, ylabel=,
 242          scale=0.4,
 243          samples=100, smooth, unbounded coords=jump
 244        }
 245      }
 246      \tikzset{
 247        blankplot/.append style={orange, mark=none}
 248      }
 249
 250      \begin{figure*}[ht]
 251        \centering
 252
 253        \begin{tabularx}{\textwidth}{r|Y|Y}
 254
 255          & \(n\) is even & \(n\) is odd \\ \hline
 256
 257          \centering \(x^n, n \in \mathbb{Z}^+\) & 
 258
 259          \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
 260            \begin{axis}[blank, xmin=-3,  xmax=3]
 261              \addplot[blankplot] {(x^2)};
 262            \end{axis}
 263          \end{tikzpicture}} &
 264
 265          \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
 266            \begin{axis}[blank, xmin=-3,  xmax=3]
 267              \addplot[blankplot, domain=-3:3] {(x^3)};
 268            \end{axis}
 269          \end{tikzpicture}} \\ \hline
 270
 271          \centering \(x^n, n \in \mathbb{Z}^-\) &
 272
 273          \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
 274            \begin{axis}[blank, xmin=-4, xmax=4, ymax=8, ymin=-0]
 275              \addplot[blankplot, samples=100] {(x^(-2))};
 276            \end{axis}
 277          \end{tikzpicture}} &
 278
 279          \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
 280            \begin{axis}[blank, xmin=-3, xmax=3]
 281              \addplot[blankplot, domain=-3:-0.1] {(x^(-1))};
 282              \addplot[blankplot, domain=0.1:3] {(x^(-1))};
 283            \end{axis}
 284          \end{tikzpicture}} \\ \hline
 285
 286          \centering \(x^{\frac{1}{n}}, n \in \mathbb{Z}^-\) &
 287
 288          \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
 289            \begin{axis}[blank, xmin=-1,  xmax=5]
 290              \addplot[blankplot] {(x^(1/2))};
 291            \end{axis}
 292          \end{tikzpicture}} &
 293
 294          \adjustbox{margin=0 1ex, valign=m}{\begin{tikzpicture}
 295            \begin{axis}[blank, xmin=-3, xmax=3, ymin=-3, ymax=3]
 296              \addplot [blankplot, domain=-2:2] gnuplot[id=poly]{sgn(x)*(abs(x)**(1./3)) };
 297            \end{axis}
 298          \end{tikzpicture}} \\ \hline
 299
 300        \end{tabularx}
 301      \end{figure*}
 302
 303      \section{Polynomials}
 304
 305      \subsection*{Linear equations}
 306
 307      \subsubsection*{Forms}
 308
 309      \begin{itemize}
 310          \tightlist
 311        \item \(y=mx+c\)
 312        \item \(\frac{x}{a} + \frac{y}{b}=1\) where \((x_1, y_1)\) lies on the graph
 313        \item \(y-y_1 = m(x-x_1)\) where \((a,0)\) and \((0,b)\) are \(x\)- and \(y\)-intercepts
 314      \end{itemize}
 315
 316      \subsubsection*{Line properties}
 317
 318      Parallel lines: \(m_1 = m_2\)\\
 319      Perpendicular lines: \(m_1 \times m_2 = -1\)\\
 320      Distance: \(|\vec{AB}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\)
 321
 322      \subsection*{Quadratics}
 323      \setlength{\abovedisplayskip}{1pt}
 324      \setlength{\belowdisplayskip}{1pt}
 325      \[ x^2 + bx + c = (x+m)(x+n) \]
 326      \hfill where \(mn=c, \> m+n=b\)
 327
 328      \textbf{Difference of squares}
 329      \[ a^2 - b^2 = (a-b)(a+b) \]
 330      \textbf{Perfect squares}
 331      \[ a^2 \pm 2ab + b^2 = (a \pm b^2) \]
 332      \textbf{Completing the square}
 333      \begin{align*}
 334        x^2+bx+c &= (x+\frac{b}{2})^2+c-\frac{b^2}{4} \\
 335        ax^2+bx+c &= a(x-\frac{b}{2a})^2+c-\frac{b^2}{4a}
 336      \end{align*}
 337      \textbf{Quadratic formula}
 338      \[ x = \dfrac{-b\pm\sqrt{b^2-4ac}}{2a} \]
 339      \hfill (Discriminant \(\Delta=b^2-4ac\))
 340
 341      \subsection*{Cubics}
 342
 343      \textbf{Difference of cubes}
 344      \[ a^3 - b^3 = (a-b)(a^2 + ab + b^2) \]
 345      \textbf{Sum of cubes}
 346      \[ a^3 + b^3 = (a+b)(a^2 - ab + b^2) \]
 347      \textbf{Perfect cubes}
 348      \[ a^3 \pm 3a^2b + 3ab^2 \pm b^3 = (a \pm b)^3 \]
 349
 350      \[ y=a(bx-h)^3 + c \]
 351
 352      \begin{itemize}
 353          \tightlist
 354        \item
 355          \(m=0\) at \emph{stationary point of inflection}
 356          (i.e.~(\({h \over b}, k)\))
 357        \item \(y=(x-a)^2(x-b)\) --- max at \(x=a\), min at \(x=b\)
 358        \item \(y=a(x-b)(x-c)(x-d)\) --- roots at \(b, c, d\)
 359        \item \(y=a(x-b)^2(x-c)\) --- roots at \(b\) (instantaneous), \(c\) (intercept)
 360      \end{itemize}
 361
 362      \subsection*{Quartic graphs}
 363
 364      \subsubsection*{Forms of quartic equations}
 365
 366      \(y=ax^4\)\\
 367      \(y=a(x-b)(x-c)(x-d)(x-e)\)\\
 368      \(y=ax^4+cd^2 (c \ge 0)\)\\
 369      \(y=ax^2(x-b)(x-c)\)\\
 370      \(y=a(x-b)^2(x-c)^2\)\\
 371      \(y=a(x-b)(x-c)^3\)
 372
 373      \input{transformations}
 374      \input{stuff}
 375      \input{circ-functions}
 376      \input{calculus}
 377
 378      \subfile{statistics-ref}
 379
 380    \end{multicols}
 381
 382\end{document}