1\documentclass[methods-collated.tex]{subfiles} 2 3\begin{document} 4 5\section{Statistics} 6 7\subsection*{Probability} 8 9\begin{align*} 10\Pr(A \cup B) &= \Pr(A) + \Pr(B) - \Pr(A \cap B) \\ 11\Pr(A \cap B) &= \Pr(A|B) \times \Pr(B) \\ 12\Pr(A|B) &= \frac{\Pr(A \cap B)}{\Pr(B)} \\ 13\Pr(A) &= \Pr(A|B) \cdot \Pr(B) + \Pr(A|B^{\prime}) \cdot \Pr(B^{\prime}) 14\end{align*} 15 16Mutually exclusive: \(\Pr(A \cap B) = 0\) \\ 17 18Independent events: 19\begin{flalign*} 20\quad \Pr(A \cap B) &= \Pr(A) \times \Pr(B)& \\ 21\Pr(A|B) &= \Pr(A) \\ 22\Pr(B|A) &= \Pr(B) 23\end{flalign*} 24 25\subsection*{Combinatorics} 26 27\begin{itemize}\tightlist 28\item Arrangements \({n \choose k} = \frac{n!}{(n-k)}\) 29\item \colorbox{highlight}{Combinations} \({n \choose k} = \frac{n!}{k!(n-k)!}\) 30\item Note \({n \choose k} = {n \choose k-1}\) 31\end{itemize} 32 33\subsection*{Distributions} 34 35\begin{tikzpicture} 36\begin{axis}[axis lines=left, 37 ticks=none, 38 xmin=0, 39 ymax=0.5, 40 enlargelimits=upper, 41 ylabel={\(\Pr(X=x)\)}, 42 xlabel={\(x\)}, 43 every axis x label/.style={at={(current axis.right of origin)},anchor=north west}, 44 every axis y label/.style={at={(axis description cs:-0.02,0.5)}, anchor=south west, rotate=90}, 45] 46\fill[pattern=north east lines, pattern color=orange] (0,0) -- plot[domain=0:1.68, samples=50] function {abs(x)*exp(-x)} -- (1.68,0) -- cycle; 47\fill[pattern=north west lines, pattern color=red] (1.68,0) -- plot[domain=1.68:5, samples=50] function {abs(x)*exp(-x)} -- (5,0) -- cycle; 48\draw[dashed, blue, very thick] (axis cs:1.68,0) -- (axis cs:1.68,0.31) node [above, anchor=south west, black] {Median}; 49\draw[dashed, blue, very thick] (axis cs:2,0) -- (axis cs:2,0.27) node [above, anchor=west, black] {Mean}; 50\draw[dashed, blue, very thick] (axis cs:1,0) -- (axis cs:1,0.365) node [above, black] {Mode}; 51\node at (1,0.18) {\textbf{50\%}}; 52\node at (3.1,0.08) {\textbf{50\%}}; 53\addplot[thick, black, no markers, samples=200, domain=0:5] {abs(x)*exp(-x)}; 54\end{axis} 55\end{tikzpicture} 56 57\subsubsection*{Mean \(\mu\)} 58 59\begin{align*} 60 E(X) &= \frac{\Sigma \left[ x \cdot f(x) \right]}{\Sigma f}\tag{\(f =\) absolute frequency} \\ 61 &= \sum_{i=1}^n \left[ x_i \cdot \Pr(X=x_i) \right]\tag{discrete}\\ 62 &= \int_\textbf{X} (x \cdot f(x)) \> dx 63\end{align*} 64 65\subsubsection*{Mode} 66 67Value of \(X\) which has the highest probability 68 69\begin{itemize}\tightlist 70\item Most popular value in discrete distributions 71\item Must exist in distribution 72\item Represented by local max in pdf 73\item Multiple modes exist when \(>1 \> X\) value have equal-highest probability 74\end{itemize} 75 76\subsubsection*{Median} 77 78Value separating lower and upper half of distribution area 79 80\textbf{Continuous:} 81\[ m = X \> \text{such that} \> \int_{-\infty}^{m} f(x) \> dx = 0.5 \] 82 83\textbf{Discrete:} (not in course) 84\begin{itemize}\tightlist 85\item Does not have to exist in distribution 86\item Add values of \(X\) smallest to largest until sum is \(\ge0.5\) 87\item If \(X_1 < 0.5 < X_2\), then median is the average of \(X_1\) and \(X_2\) 88\begin{itemize}\tightlist 89\item If \(m > 0.5\), then value of \(X\) that is reached is the median of \(X\) 90\end{itemize} 91\end{itemize} 92 93\subsubsection*{Variance \(\sigma^2\)} 94 95\begin{align*} 96\operatorname{Var}(x) &= \sum_{i=1}^n p_i (x_i-\mu)^2 \\ 97 &= \sum (x-\mu)^2\times \Pr(X=x) \\ 98 &= \sum x^2\times p(x) - \mu^2 \\ 99 &= \operatorname{E}(X^2) - [\operatorname{E}(X)]^2 \\ 100 &= E\left[(X-\mu)^2\right] 101\end{align*} 102 103\subsubsection*{Standard deviation \(\sigma\)} 104 105\begin{align*} 106\sigma &= \operatorname{sd}(X) \\ 107 &= \sqrt{\operatorname{Var}(X)} 108\end{align*} 109 110\subsection*{Binomial distributions} 111 112Conditions for a \textit{binomial distribution}: 113\begin{enumerate}\tightlist 114\item Two possible outcomes: \textbf{success} or \textbf{failure} 115\item \(\Pr(\text{success})\) (=\(p\)) is constant across trials 116\item Finite number \(n\) of independent trials 117\end{enumerate} 118 119 120\subsubsection*{Properties of \(X \sim \operatorname{Bi}(n,p)\)} 121 122\begin{align*} 123\mu(X) &= np \\ 124\operatorname{Var}(X) &= np(1-p) \\ 125\sigma(X) &= \sqrt{np(1-p)} \\ 126\Pr(X=x) &= {n \choose x}\cdot p^x \cdot (1-p)^{n-x} 127\end{align*} 128 129\begin{cas} 130 Interactive \(\rightarrow\) Distribution \(\rightarrow\) \verb;binomialPdf; 131\begin{description}[nosep, style=multiline, labelindent=0.5cm, leftmargin=3cm, font=\normalfont] 132\item[x:] no. of successes 133\item[numtrial:] no. of trials 134\item[pos:] probability of success 135\end{description} 136\end{cas} 137 138\subsection*{Continuous random variables} 139 140A continuous random variable \(X\) has a pdf \(f\) such that: 141 142\begin{enumerate} 143\item \(f(x) \ge0\forall x \) 144\item \(\int^\infty_{-\infty} f(x) \> dx = 1\) 145\end{enumerate} 146 147\begin{align*} 148 E(X) &= \int_\textbf{X} (x \cdot f(x)) \> dx \\ 149\operatorname{Var}(X) &= E\left[(X-\mu)^2\right] 150\end{align*} 151 152\[\Pr(X \le c) = \int^c_{-\infty} f(x) \> dx \] 153 154\begin{cas} 155 Define piecewise functions: \\ 156 \-\hspace{1em}Math3 \(\rightarrow\) 157\begin{tikzpicture}% 158\draw rectangle (0.5,0.5); 159\node at (0.08,0.25) {\(\{\)}; 160\filldraw[black] (0.15, 0.4) rectangle(0.25, 0.3); 161\draw (0.35, 0.4) rectangle(0.45, 0.3); 162\node[font=\footnotesize] at (0.3,0.3) {\verb;,;}; 163\draw (0.15, 0.2) rectangle(0.25, 0.1); 164\node[font=\footnotesize] at (0.3,0.1) {\verb;,;}; 165\draw (0.35, 0.2) rectangle(0.45, 0.1); 166\end{tikzpicture} 167% TODO: finish this section 168\end{cas} 169 170\subsection*{Two random variables \(X, Y\)} 171 172If \(X\) and \(Y\) are independent: 173\begin{align*} 174\operatorname{E}(aX+bY) & = a\operatorname{E}(X)+b\operatorname{E}(Y) \\ 175\operatorname{Var}(aX \pm bY \pm c) &= a^2\operatorname{Var}(X) + b^2\operatorname{Var}(Y) 176\end{align*} 177 178\subsection*{Linear functions \(X \rightarrow aX+b\)} 179 180\begin{align*} 181\Pr(Y \le y) &= \Pr(aX+b \le y) \\ 182 &= \Pr\left(X \le \dfrac{y-b}{a}\right) \\ 183 &= \int^{\frac{y-b}{a}}_{-\infty} f(x) \> dx 184\end{align*} 185 186\begin{align*} 187\textbf{Mean:} && \operatorname{E}(aX+b) & = a\operatorname{E}(X)+b \\ 188\textbf{Variance:} && \operatorname{Var}(aX+b) &= a^2\operatorname{Var}(X) \\ 189\end{align*} 190 191\subsection*{Expectation theorems} 192 193For some non-linear function \(g\), the expected value \(E(g(X))\) is not equal to \(g(E(X))\). 194 195\begin{align*} 196 E(X^2) &= \operatorname{Var}(X) - \left[E(X)\right]^2 \\ 197 E(X^n) &= \Sigma x^n \cdot p(x) \tag{non-linear} \\ 198 &\ne[E(X)]^n \\ 199 E(aX \pm b) &= aE(X) \pm b \tag{linear} \\ 200 E(b) &= b \tag{\(\forall b \in \mathbb{R}\)}\\ 201 E(X+Y) &= E(X) + E(Y) \tag{two variables} 202\end{align*} 203 204\begin{figure*}[hb] 205\centering 206\include{../spec/normal-dist-graph} 207\end{figure*} 208 209\subsection*{Sample mean} 210 211Approximation of the \textbf{population mean} determined experimentally. 212 213\[\overline{x} = \dfrac{\Sigma x}{n} \] 214 215where 216\begin{description}[nosep, labelindent=0.5cm] 217\item \(n\) is the size of the sample (number of sample points) 218\item \(x\) is the value of a sample point 219\end{description} 220 221\begin{cas} 222\begin{enumerate}[leftmargin=3mm] 223\item Spreadsheet 224\item In cell A1:\\ \path{mean(randNorm(sd, mean, sample size))} 225\item Edit \(\rightarrow\) Fill \(\rightarrow\) Fill Range 226\item Input range as A1:An where \(n\) is the number of samples 227\item Graph \(\rightarrow\) Histogram 228\end{enumerate} 229\end{cas} 230 231\subsubsection*{Sample size of \(n\)} 232 233\[\overline{X} = \sum_{i=1}^n \frac{x_i}{n} = \dfrac{\sum x}{n} \] 234 235Sample mean is distributed with mean \(\mu\) and sd \(\frac{\sigma}{\sqrt{n}}\) (approaches these values for increasing sample size \(n\)). 236 237For a new distribution with mean of \(n\) trials, \(\operatorname{E}(X^\prime) = \operatorname{E}(X), \quad \operatorname{sd}(X^\prime) = \dfrac{\operatorname{sd}(X)}{\sqrt{n}}\) 238 239\begin{cas} 240 241\begin{itemize} 242\item Spreadsheet \(\rightarrow\) Catalog \(\rightarrow\) \verb;randNorm(sd, mean, n); where \verb;n; is the number of samples. Show histogram with Histogram key in top left 243\item To calculate parameters of a dataset: Calc \(\rightarrow\) One-variable 244\end{itemize} 245 246\end{cas} 247 248\subsection*{Population sampling} 249 250\subsubsection*{Population proportion} 251 252\[ p = \dfrac{n \text{ with attribute in population}}{\text{population size}} \] 253 254Constant for a given population. 255 256\subsection*{Sample proportion} 257 258\[\hat{p} = \dfrac{n \text{ with attribute in sample}}{\text{sample size}} \] 259 260Varies with each sample. 261 262\subsection*{Normal distributions} 263 264 265\[ Z = \frac{X - \mu}{\sigma} \] 266 267Normal distributions must have area (total prob.) of 1 \(\implies \int^\infty_{-\infty} f(x) \> dx = 1\) \\ 268\(\text{mean} = \text{mode} = \text{median}\) 269 270\begin{warning} 271 Always express \(z\) as +ve. Express confidence \textit{interval} as ordered pair. 272\end{warning} 273 274\subsection*{Confidence intervals} 275 276\begin{itemize} 277\item \textbf{Point estimate:} single-valued estimate of the population mean from the value of the sample mean \(\overline{x}\) 278\item \textbf{Interval estimate:} confidence interval for population mean \(\mu\) 279\item \(C\)\% confidence interval \(\implies\) \(C\)\% of samples will contain population mean \(\mu\) 280\end{itemize} 281 282\begin{cas} 283 Menu \(\rightarrow\) Stats \(\rightarrow\) Calc \(\rightarrow\) Interval \\ 284 Set \textit{Type = One-Sample Z Int} \\ \-\hspace{1em} and select \textit{Variable} 285\end{cas} 286 287\subsubsection*{95\% confidence interval} 288 289For 95\% c.i. of population mean \(\mu\): 290 291\[ x \in \left(\overline{x}\pm1.96\dfrac{\sigma}{\sqrt{n}}\right)\] 292 293where: 294\begin{description}[nosep, labelindent=0.5cm] 295\item \(\overline{x}\) is the sample mean 296\item \(\sigma\) is the population sd 297\item \(n\) is the sample size from which \(\overline{x}\) was calculated 298\end{description} 299 300\subsubsection*{Confidence interval of \(p\) from \(\hat{p}\)} 301 302\[ x \in \left( \hat{p}\pm Z \sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}\right) \] 303 304\subsection*{Margin of error} 305 306For 95\% confidence interval of \(\mu\): 307\begin{align*} 308 M &= 1.96\times \dfrac{\sigma}{\sqrt{n}} \\ 309 &= \dfrac{1}{2}\times \text{width of c.i.} \\ 310\implies n &= \left( \dfrac{1.96\sigma}{M}\right)^2 311\end{align*} 312 313Always round \(n\) up to a whole number of samples. 314 315\subsection*{General case} 316 317For \(C\)\% c.i. of population mean \(\mu\): 318 319\[ x \in \left( \overline{x}\pm k \dfrac{\sigma}{\sqrt{n}}\right) \] 320\hfill where \(k\) is such that \(\Pr(-k < Z < k) = \frac{C}{100}\) 321 322\begin{cas} 323 Menu \(\rightarrow\) Stats \(\rightarrow\) Calc \(\rightarrow\) Interval \\ 324 Set \textit{Type = One-\colorbox{important}{Prop} Z Int} \\ 325 Input x \(= \hat{p} * n\) 326\end{cas} 327 328\subsection*{Confidence interval for multiple trials} 329 330For a set of \(n\) confidence intervals (samples), there is \(0.95^n\) chance that all \(n\) intervals contain the population mean \(\mu\). 331 332\end{document}