1\documentclass[methods-collated.tex]{subfiles}
2\begin{document}
3 \section{Statistics}
4
5 \subsection*{Probability}
6
7 \begin{align*}
8 \Pr(A \cup B) &= \Pr(A) + \Pr(B) - \Pr(A \cap B) \\
9 \Pr(A \cap B) &= \Pr(A|B) \times \Pr(B) \\
10 \Pr(A|B) &= \frac{\Pr(A \cap B)}{\Pr(B)} \\
11 \Pr(A) &= \Pr(A|B) \cdot \Pr(B) + \Pr(A|B^{\prime}) \cdot \Pr(B^{\prime})
12 \end{align*}
13
14 Mutually exclusive \(\implies \Pr(A \cup B) = 0\) \\
15
16 Independent events:
17 \begin{flalign*}
18 \quad \Pr(A \cap B) &= \Pr(A) \times \Pr(B)& \\
19 \Pr(A|B) &= \Pr(A) \\
20 \Pr(B|A) &= \Pr(B)
21 \end{flalign*}
22
23 \subsection*{Combinatorics}
24
25 \begin{itemize}
26 \item Arrangements \({n \choose k} = \frac{n!}{(n-k)}\)
27 \item \colorbox{important}{Combinations} \({n \choose k} = \frac{n!}{k!(n-k)!}\)
28 \item Note \({n \choose k} = {n \choose k-1}\)
29 \end{itemize}
30
31 \subsection*{Distributions}
32
33 \subsubsection*{Mean \(\mu\)}
34
35 \textbf{Mean} \(\mu\) or \textbf{expected value} \(E(X)\)
36
37 \begin{align*}
38 E(X) &= \frac{\Sigma \left[ x \cdot f(x) \right]}{\Sigma f} \tag{\(f =\) absolute frequency} \\
39 &= \sum_{i=1}^n \left[ x_i \cdot \Pr(X=x_i) \right] \tag{discrete}\\
40 &= \int_\textbf{X} (x \cdot f(x)) \> dx
41 \end{align*}
42
43 \subsubsection*{Mode}
44
45 Most popular value (has highest probability of all \(X\) values). Multiple modes can exist if \(>1 \> X\) value have equal-highest probability. Number must exist in distribution.
46
47 \subsubsection*{Median}
48
49 If \(m > 0.5\), then value of \(X\) that is reached is the median of \(X\). If \(m = 0.5 = 0.5\), then \(m\) is halfway between this value and the next. To find \(m\), add values of \(X\) from smallest to alrgest until the sum reaches 0.5.
50
51 \[ m = X \> \text{such that} \> \int_{-\infty}^{m} f(x) dx = 0.5 \]
52
53 \subsubsection*{Variance \(\sigma^2\)}
54
55 \begin{align*}
56 \operatorname{Var}(x) &= \sum_{i=1}^n p_i (x_i-\mu)^2 \\
57 &= \sum (x-\mu)^2 \times \Pr(X=x) \\
58 &= \sum x^2 \times p(x) - \mu^2 \\
59 &= \operatorname{E}(X^2) - [\operatorname{E}(X)]^2
60 &= E\left[(X-\mu)^2\right]
61 \end{align*}
62
63 \subsubsection*{Standard deviation \(\sigma\)}
64
65 \begin{align*}
66 \sigma &= \operatorname{sd}(X) \\
67 &= \sqrt{\operatorname{Var}(X)}
68 \end{align*}
69
70 \subsection*{Binomial distributions}
71
72 Conditions for a \textit{binomial distribution}:
73 \begin{enumerate}
74 \item Two possible outcomes: \textbf{success} or \textbf{failure}
75 \item \(\Pr(\text{success})\) is constant across trials (also denoted \(p\))
76 \item Finite number \(n\) of independent trials
77 \end{enumerate}
78
79
80 \subsubsection*{Properties of \(X \sim \operatorname{Bi}(n,p)\)}
81
82 \begin{align*}
83 \mu(X) &= np \\
84 \operatorname{Var}(X) &= np(1-p) \\
85 \sigma(X) &= \sqrt{np(1-p)} \\
86 \Pr(X=x) &= {n \choose x} \cdot p^x \cdot (1-p)^{n-x}
87 \end{align*}
88
89 \begin{cas}
90 Interactive \(\rightarrow\) Distribution \(\rightarrow\) \verb;binomialPdf; then input
91 \begin{description}[nosep, style=multiline, labelindent=0.5cm, leftmargin=3cm, font=\normalfont]
92 \item [x:] no. of successes
93 \item [numtrial:] no. of trials
94 \item [pos:] probability of success
95 \end{description}
96 \end{cas}
97
98 \subsection*{Continuous random variables}
99
100 A continuous random variable \(X\) has a pdf \(f\) such that:
101
102 \begin{enumerate}
103 \item \(f(x) \ge 0 \forall x \)
104 \item \(\int^\infty_{-\infty} f(x) \> dx = 1\)
105 \end{enumerate}
106
107 \begin{align*}
108 E(X) &= \int_\textbf{X} (x \cdot f(x)) \> dx \\
109 \operatorname{Var}(X) &= E\left[(X-\mu)^2\right]
110 \end{align*}
111
112 \[ \Pr(X \le c) = \int^c_{-\infty} f(x) \> dx \]
113
114
115 \subsection*{Two random variables \(X, Y\)}
116
117 If \(X\) and \(Y\) are independent:
118 \begin{align*}
119 \operatorname{E}(aX+bY) & = a\operatorname{E}(X)+b\operatorname{E}(Y) \\
120 \operatorname{Var}(aX \pm bY \pm c) &= a^2 \operatorname{Var}(X) + b^2 \operatorname{Var}(Y)
121 \end{align*}
122
123 \subsection*{Linear functions \(X \rightarrow aX+b\)}
124
125 \begin{align*}
126 \Pr(Y \le y) &= \Pr(aX+b \le y) \\
127 &= \Pr\left(X \le \dfrac{y-b}{a}\right) \\
128 &= \int^{\frac{y-b}{a}}_{-\infty} f(x) \> dx
129 \end{align*}
130
131 \begin{align*}
132 \textbf{Mean:} && \operatorname{E}(aX+b) & = a\operatorname{E}(X)+b \\
133 \textbf{Variance:} && \operatorname{Var}(aX+b) &= a^2 \operatorname{Var}(X) \\
134 \end{align*}
135
136 \subsection*{Expectation theorems}
137
138 For some non-linear function \(g\), the expected value \(E(g(X))\) is not equal to \(g(E(X))\).
139
140 \begin{align*}
141 E(X^2) &= \operatorname{Var}(X) - \left[E(X)\right]^2 \\
142 E(X^n) &= \Sigma x^n \cdot p(x) \tag{non-linear} \\
143 &\ne [E(X)]^n \\
144 E(aX \pm b) &= aE(X) \pm b \tag{linear} \\
145 E(b) &= b \tag{\(\forall b \in \mathbb{R}\)}\\
146 E(X+Y) &= E(X) + E(Y) \tag{two variables}
147 \end{align*}
148
149 \subsection*{Sample mean}
150
151 Approximation of the \textbf{population mean} determined experimentally.
152
153 \[ \overline{x} = \dfrac{\Sigma x}{n} \]
154
155 where
156 \begin{description}[nosep, labelindent=0.5cm]
157 \item \(n\) is the size of the sample (number of sample points)
158 \item \(x\) is the value of a sample point
159 \end{description}
160
161 \begin{cas}
162 \begin{enumerate}[leftmargin=3mm]
163 \item Spreadsheet
164 \item In cell A1:\\ \path{mean(randNorm(sd, mean, sample size))}
165 \item Edit \(\rightarrow\) Fill \(\rightarrow\) Fill Range
166 \item Input range as A1:An where \(n\) is the number of samples
167 \item Graph \(\rightarrow\) Histogram
168 \end{enumerate}
169 \end{cas}
170
171 \subsubsection*{Sample size of \(n\)}
172
173 \[ \overline{X} = \sum_{i=1}^n \frac{x_i}{n} = \dfrac{\sum x}{n} \]
174
175 Sample mean is distributed with mean \(\mu\) and sd \(\frac{\sigma}{\sqrt{n}}\) (approaches these values for increasing sample size \(n\)).
176
177 For a new distribution with mean of \(n\) trials, \(\operatorname{E}(X^\prime) = \operatorname{E}(X), \quad \operatorname{sd}(X^\prime) = \dfrac{\operatorname{sd}(X)}{\sqrt{n}}\)
178
179 \begin{cas}
180
181 \begin{itemize}
182 \item Spreadsheet \(\rightarrow\) Catalog \(\rightarrow\) \verb;randNorm(sd, mean, n); where \verb;n; is the number of samples. Show histogram with Histogram key in top left
183 \item To calculate parameters of a dataset: Calc \(\rightarrow\) One-variable
184 \end{itemize}
185
186 \end{cas}
187
188 \subsection*{Normal distributions}
189
190
191 \[ Z = \frac{X - \mu}{\sigma} \]
192
193 Normal distributions must have area (total prob.) of 1 \(\implies \int^\infty_{-\infty} f(x) \> dx = 1\) \\
194 \(\text{mean} = \text{mode} = \text{median}\)
195
196 \begin{warning}
197 Always express \(z\) as +ve. Express confidence \textit{interval} as ordered pair.
198 \end{warning}
199
200 \pgfmathdeclarefunction{gauss}{2}{%
201 \pgfmathparse{1/(#2*sqrt(2*pi))*exp(-((x-#1)^2)/(2*#2^2))}%
202 }
203 \pgfkeys{/pgf/decoration/.cd,
204 distance/.initial=10pt
205 }
206 \pgfdeclaredecoration{add dim}{final}{
207 \state{final}{%
208 \pgfmathsetmacro{\dist}{5pt*\pgfkeysvalueof{/pgf/decoration/distance}/abs(\pgfkeysvalueof{/pgf/decoration/distance})}
209 \pgfpathmoveto{\pgfpoint{0pt}{0pt}}
210 \pgfpathlineto{\pgfpoint{0pt}{2*\dist}}
211 \pgfpathmoveto{\pgfpoint{\pgfdecoratedpathlength}{0pt}}
212 \pgfpathlineto{\pgfpoint{(\pgfdecoratedpathlength}{2*\dist}}
213 \pgfsetarrowsstart{latex}
214 \pgfsetarrowsend{latex}
215 \pgfpathmoveto{\pgfpoint{0pt}{\dist}}
216 \pgfpathlineto{\pgfpoint{\pgfdecoratedpathlength}{\dist}}
217 \pgfusepath{stroke}
218 \pgfpathmoveto{\pgfpoint{0pt}{0pt}}
219 \pgfpathlineto{\pgfpoint{\pgfdecoratedpathlength}{0pt}}
220 }}
221 \tikzset{dim/.style args={#1,#2}{decoration={add dim,distance=#2},
222 decorate,
223 postaction={decorate,decoration={text along path,
224 raise=#2,
225 text align={align=center},
226 text={#1}}}}
227 }
228 \begin{figure*}[hb]
229 \centering
230 \begin{tikzpicture}
231 \begin{axis}[every axis plot post/.style={
232 mark=none,domain=-3:3,samples=50,smooth},
233 axis x line=bottom,
234 axis y line=left,
235 enlargelimits=upper,
236 x=\textwidth/10,
237 ytick={0.55},
238 yticklabels={\(\frac{1}{\sigma \sqrt{2\pi}}\)},
239 xtick={-2,-1,0,1,2},
240 x tick label style = {font=\footnotesize},
241 xticklabels={\((\mu-2\sigma)\), \((\mu-\sigma)\), \(\mu\), \((\mu+\sigma)\), \((\mu+2\sigma)\)},
242 xlabel={\(x\)},
243 every axis x label/.style={at={(current axis.right of origin)},anchor=north west},
244 every axis y label/.style={at={(axis description cs:-0.02,0.2)}, anchor=south west, rotate=90},
245 ylabel={\(\Pr(X=x)\)}]
246 \addplot {gauss(0,0.75)};
247 \fill[red!30] (-3,0) -- plot[id=f3,domain=-3:3,samples=50] function {1/(0.75*sqrt(2*pi))*exp(-((x)^2)/(2*0.75^2))} -- (3,0) -- cycle;
248 \fill[darkgray!30] (3,0) -- plot[id=f3,domain=-3:3,samples=50] function {1/(0.75*sqrt(2*pi))*exp(-x*x*0.5/(0.75*0.75))} -- (3,0) -- cycle;
249 \fill[lightgray!30] (-2,0) -- plot[id=f3,domain=-2:2,samples=50] function {1/(0.75*sqrt(2*pi))*exp(-x*x*0.5/(0.75*0.75))} -- (2,0) -- cycle;
250 \fill[white!30] (-1,0) -- plot[id=f3,domain=-1:1,samples=50] function {1/(0.75*sqrt(2*pi))*exp(-x*x*0.5/(0.75*0.75))} -- (1,0) -- cycle;
251 \begin{scope}[<->]
252 \draw (-1,0.35) -- (1,0.35) node [midway, fill=white] {68.3\%};
253 \draw (-2,0.25) -- (2,0.25) node [midway, fill=white] {95.5\%};
254 \draw (-3,0.15) -- (3,0.15) node [midway, fill=white] {99.7\%};
255 \end{scope}
256 \begin{scope}[-, dashed, gray]
257 \draw (-1,0) -- (-1, 0.35);
258 \draw (1,0) -- (1, 0.35);
259 \draw (-2,0) -- (-2, 0.25);
260 \draw (2,0) -- (2, 0.25);
261 \draw (-3,0) -- (-3, 0.15);
262 \draw (3,0) -- (3, 0.15);
263 \end{scope}
264 \end{axis}
265 \begin{axis}[every axis plot post/.append style={
266 mark=none,domain=-3:3,samples=50,smooth},
267 axis x line=bottom,
268 enlargelimits=upper,
269 x=\textwidth/10,
270 xtick={-2,-1,0,1,2},
271 axis x line shift=30pt,
272 hide y axis,
273 x tick label style = {font=\footnotesize},
274 xlabel={\(Z\)},
275 every axis x label/.style={at={(axis description cs:1,-0.25)},anchor=south west}]
276 \addplot {gauss(0,0.75)};
277 \end{axis}
278 \end{tikzpicture}
279 \end{figure*}
280
281 \subsection*{Confidence intervals}
282
283 \begin{itemize}
284 \item \textbf{Point estimate:} single-valued estimate of the population mean from the value of the sample mean \(\overline{x}\)
285 \item \textbf{Interval estimate:} confidence interval for population mean \(\mu\)
286 \item \(C\)\% confidence interval \(\implies\) \(C\)\% of samples will contain population mean \(\mu\)
287 \end{itemize}
288
289 \subsubsection*{95\% confidence interval}
290
291 For 95\% c.i. of population mean \(\mu\):
292
293 \[ x \in \left(\overline{x} \pm 1.96 \dfrac{\sigma}{\sqrt{n}} \right)\]
294
295 where:
296 \begin{description}[nosep, labelindent=0.5cm]
297 \item \(\overline{x}\) is the sample mean
298 \item \(\sigma\) is the population sd
299 \item \(n\) is the sample size from which \(\overline{x}\) was calculated
300 \end{description}
301
302 \begin{cas}
303 Menu \(\rightarrow\) Stats \(\rightarrow\) Calc \(\rightarrow\) Interval \\
304 Set \textit{Type = One-Sample Z Int} \\ \-\hspace{1em} and select \textit{Variable}
305 \end{cas}
306
307 \subsection*{Margin of error}
308
309 For 95\% confidence interval of \(\mu\):
310 \begin{align*}
311 M &= 1.96 \times \dfrac{\sigma}{\sqrt{n}} \\
312 &= \dfrac{1}{2} \times \text{width of c.i.} \\
313 \implies n &= \left( \dfrac{1.96 \sigma}{M} \right)^2
314 \end{align*}
315
316 Always round \(n\) up to a whole number of samples.
317
318 \subsection*{General case}
319
320 For \(C\)\% c.i. of population mean \(\mu\):
321
322 \[ x \in \left( \overline{x} \pm k \dfrac{\sigma}{\sqrt{n}} \right) \]
323 \hfill where \(k\) is such that \(\Pr(-k < Z < k) = \frac{C}{100}\)
324
325 \begin{cas}
326 Menu \(\rightarrow\) Stats \(\rightarrow\) Calc \(\rightarrow\) Interval \\
327 Set \textit{Type = One-\colorbox{important}{Prop} Z Int} \\
328 Input x \(= \hat{p} * n\)
329 \end{cas}
330
331 \subsection*{Confidence interval for multiple trials}
332
333 For a set of \(n\) confidence intervals (samples), there is \(0.95^n\) chance that all \(n\) intervals contain the population mean \(\mu\).
334
335 \end{document}