1# Complex & Imaginary Numbers
2
3## Imaginary numbers
4
5$i^2 = -1 \quad \therefore i = \sqrt {-1}$
6
7### Simplifying negative surds
8
9$\sqrt{-2} = \sqrt{-1 \times 2}$
10$= \sqrt{2}i$
11
12
13## Complex numbers
14
15$\mathbb{C} = \{a+bi : a, b \in \mathbb{R} \}$
16
17General form: $z=a+bi$
18$\operatorname{Re}(z) = a, \quad \operatorname{Im}(z) = b$
19
20### Addition
21
22If $z_1 = a+bi$ and $z_2=c+di$, then
23$z_1+z_2 = (a+c)+(b+d)i$
24
25### Subtraction
26
27If $z_1=a+bi$ and $z_2=c+di$, then $z_1−z_2=(a−c)+(b−d)i$
28
29### Multiplication by a real constant
30
31If $z=a+bi$ and $k \in \mathbb{R}$, then $kz=ka+kbi$
32
33### Powers of $i$
34$i^0=1$
35$i^1=i$
36$i^2=-1$
37$i^3=-i$
38$i^4=1$
39$\dots$
40
41Therefore..
42
43- $i^{4n} = 1$
44- $i^{4n+1} = i$
45- $i^{4n+2} = -1$
46- $i^{4n+3} = -i$
47
48Divide by 4 and take remainder.
49
50### Multiplying complex expressions
51
52If $z_1 = a+bi$ and $z_2=c+di$, then
53$z_1 \times z_2 = (ac-bd)+(ad+bc)i$
54
55### Conjugates
56
57If $z=a+bi$, conjugate of $z$ is $\overline{z} = a-bi$ (flipped operator)
58
59Also, $z \overline{z} = (a+bi)(a-bi) = a^2+b^2 = |z|^2$
60
61- Multiplication and addition are associative
62
63#### Properties
64
65- $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
66- $\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$
67- $\overline{kz} = k \overline{z}, \text{ for } k \in \mathbb{R}$
68- $z \overline{z} = |z|^2$
69- $z + \overline{z} = 2 \operatorname{Re}(z)$
70
71
72### Modulus
73
74Distance from origin.
75$|{z}|=\sqrt{a^2+b^2}$
76
77$\therefore z \overline{z} = |z|^2$
78
79#### Properties
80
81- $|z_1 z_2| = |z_1| |z_2|$
82- $|{z_1 \over z_2}| = {|z_1| \over |z_2|}$
83- $|z_1 + z_2| \le |z_1 + |z_2|$
84
85### Multiplicative inverse
86
87$z^{-1} = {1 \over z} = {{a-bi} \over {a^2+B^2}} = {\overline{z} \over {|z|^2}}$
88
89### Dividing complex numbers
90
91${{z_1} \over {z_2}} = {{z_1\ {z_2}^{-1}}} = {{z_1 \overline{z_2}} \over {{|z_2|}^2}}$
92
93(using multiplicative inverse)
94
95In practice, rationalise denominator:
96${z_1 \over z_2} = {{(a+bi)(c-di)} \over {c^2+d^2}}$
97
98## Argand planes
99
100- Geometric representation of $\mathbb{C}$
101- Horizontal $= \operatorname{Re}(z)$; vertical $= \operatorname{Im}(z)$
102- Multiplication by $i$ results in an anticlockwise rotation of $\pi \over 2$
103
104## Solving complex quadratics
105
106To solve $z^2+a^2=0$ (sum of two squares):
107
108$z^2+a^2=z^2-(ai)^2=(z+ai)(z-ai)$
109
110## Polar form
111
112General form:
113$z=r \operatorname{cis} \theta$
114$= r\operatorname{cos}\theta+r\operatorname{sin}\theta i$
115
116where
117- $z=a+bi$
118- $r$ is the distance from origin, given by Pythagoras ($r=\sqrt{x^2+y^2}$)
119- $\theta$ is the argument of $z$, CCW from origin
120
121Note each complex number has multiple polar representations:
122$z=r \operatorname{cis} \theta = r \operatorname{cis} (\theta+2 n\pi$) where $n$ is integer number of revolutions
123
124### Multiplication and division in polar form
125
126$z_1z_2=r_1r_2\operatorname{cis}(\theta_1+\theta_2)$ (multiply moduli, add angles)
127
128${z_1 \over z_2} = {r_1 \over r_2} \operatorname{cis}(\theta_1-\theta_2)$ (divide moduli, subtract angles)
129
130## de Moivres' Theorum
131
132$(r\operatorname{cis}\theta)^n=r^n\operatorname{cis}(n\theta)$