## Imaginary numbers
-$i^2 = -1$
-
-$\therefore i = \sqrt {-1}$
+$i^2 = -1 \quad \therefore i = \sqrt {-1}$
### Simplifying negative surds
$\mathbb{C} = \{a+bi : a, b \in \mathbb{R} \}$
-General form: $z=a+bi$
-- $\operatorname{Re}(z) = a$
-- $\operatorname{Im}(z) = b$
+General form: $z=a+bi$
+$\operatorname{Re}(z) = a, \quad \operatorname{Im}(z) = b$
### Addition
If $z=a+bi$, conjugate of $z$ is $\overline{z} = a-bi$ (flipped operator)
-Also, $z \overline{z} = (a+bi)(a-bi) = a^2+b^2$
+Also, $z \overline{z} = (a+bi)(a-bi) = a^2+b^2 = |z|^2$
- Multiplication and addition are associative
+#### Properties
+
+- $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
+- $\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$
+- $\overline{kz} = k \overline{z}, \text{ for } k \in \mathbb{R}$
+- $z \overline{z} = |z|^2$
+- $z + \overline{z} = 2 \operatorname{Re}(z)$
+
+
### Modulus
Distance from origin.
$\therefore z \overline{z} = |z|^2$
+#### Properties
+
+- $|z_1 z_2| = |z_1| |z_2|$
+- $|{z_1 \over z_2}| = {|z_1| \over |z_2|}$
+- $|z_1 + z_2| \le |z_1 + |z_2|$
+
### Multiplicative inverse
$z^{-1} = {1 \over z} = {{a-bi} \over {a^2+B^2}} = {\overline{z} \over {|z|^2}}$