1--- 2geometry: margin=2cm 3<!-- columns: 2 --> 4graphics: yes 5tables: yes 6author: Andrew Lorimer 7classoption: twocolumn 8 9--- 10 11# Vectors 12 13- **vector:** a directed line segment 14- arrow indicates direction 15- length indicates magnitude 16- notated as $\vec{a}, \widetilde{A}$ 17- column notation: $\begin{bmatrix} 18 x \\ y 19 \end{bmatrix}$ 20- vectors with equal magnitude and direction are equivalent 21 22 23![](graphics/vectors-intro.png) 24 25## Vector addition 26 27$\boldsymbol{u} + \boldsymbol{v}$ can be represented by drawing each vector head to tail then joining the lines. 28Addition is commutative (parallelogram) 29 30## Scalar multiplication 31 32For $k \in \mathbb{R}^+$, $k\boldsymbol{u}$ has the same direction as $\boldsymbol{u}$ but length is multiplied by a factor of $k$. 33 34When multiplied by $k < 0$, direction is reversed and length is multplied by $k$. 35 36## Vector subtraction 37 38To find $\boldsymbol{u} - \boldsymbol{v}$, add $\boldsymbol{-v}$ to $\boldsymbol{u}$ 39 40## Parallel vectors 41 42Parallel vectors have same direction or opposite direction. 43 44**Two non-zero vectors $\boldsymbol{u}$ and $\boldsymbol{v}$ are parallel if there is some $k \in \mathbb{R} \setminus \{0\}$ such at $\boldsymbol{u} = k \boldsymbol{v}$** 45 46## Position vectors 47 48Vectors may describe a position relative to $O$. 49 50For a point $A$, the position vector is $\boldsymbol{OA}$ 51 52## Linear combinations of non-parallel vectors 53 54If two non-zero vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ are not parallel, then: 55 56$$m\boldsymbol{a} + n\boldsymbol{b} = p \boldsymbol{a} + q \boldsymbol{b}\quad\text{implies}\quad m = p, \> n = q$$ 57 58## Column vector notation 59 60A vector between points $A(x_1,y_1), \> B(x_2,y_2)$ can be represented as $\begin{bmatrix}x_2-x_1\\ y_2-y_1 \end{bmatrix}$ 61 62## Component notation 63 64A vector $\boldsymbol{u} = \begin{bmatrix}x\\ y \end{bmatrix}$ can be written as $\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}$. 65$\boldsymbol{u}$ is the sum of two components $x\boldsymbol{i}$ and $y\boldsymbol{j}$ 66Magnitude of vector $\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}$ is denoted by $|u|=\sqrt{x^2+y^2}$ 67 68Basic algebra applies: 69$(x\boldsymbol{i} + y\boldsymbol{j}) + (m\boldsymbol{i} + n\boldsymbol{j}) = (x + m)\boldsymbol{i} + (y+n)\boldsymbol{j}$ 70Two vectors equal if and only if their components are equal. 71 72## Unit vectors 73 74A vector of length 1. $\boldsymbol{i}$ and $\boldsymbol{j}$ are unit vectors. 75 76A unit vector in direction of $\boldsymbol{a}$ is denoted by $\hat{\boldsymbol{a}}$: 77 78$$\hat{\boldsymbol{a}}={1 \over {|\boldsymbol{a}|}}\boldsymbol{a}\quad (\implies |\hat{\boldsymbol{a}}|=1)$$ 79 80Also, unit vector of $\boldsymbol{a}$ can be defined by $\boldsymbol{a} \cdot {|\boldsymbol{a}|}$ 81 82## Scalar products / dot products 83 84If $\boldsymbol{a} = a_i \boldsymbol{i} + a_2 \boldsymbol{j}$ and $\boldsymbol{b} = b_i \boldsymbol{i} + b_2 \boldsymbol{j}$, the dot product is: 85$$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2$$ 86 87Produces a real number, not a vector. 88 89$$\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2$$ 90 91## Scalar product properties 92 931. $k(\boldsymbol{a\cdot b})=(k\boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a}\cdot (k{b})$ 942. $\boldsymbol{a \cdot 0}=0$ 953. $\boldsymbol{a \cdot (b + c)}=\boldsymbol{a \cdot b + a \cdot c}$ 96 97For parallel vectors $\boldsymbol{a}$ and $\boldsymbol{b}$: 98$\boldsymbol{a \cdot b}=\{ 99\begin{array}{ll} 100 |\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction} \\ 101-|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions} \\ 102 \end{array}$ 103 104## Geometric scalar products 105 106$$\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta$$ 107 108where $0 \le \theta \le \pi$ 109 110## Perpendicular vectors 111 112If $\boldsymbol{a} \cdot \boldsymbol{b} = 0$, then $\boldsymbol{a} \perp \boldsymbol{b}$ (since $\cos 90 = 0$) 113 114## Finding angle between vectors 115 116$$\cos \theta = {{\boldsymbol{a} \cdot \boldsymbol{b}} \over {|\boldsymbol{a}| |\boldsymbol{b}|}} = {{a_1 b_1 + a_2 b_2} \over {|\boldsymbol{a}| |\boldsymbol{b}|}}$$ 117 118 119## Vector projections 120 121Vector resolute of $\boldsymbol{a}$ in direction of $\boldsymbol{b}$ is magnitude of $\boldsymbol{a}$ in direction of $\boldsymbol{b}$. 122 123$$\boldsymbol{u}={{\boldsymbol{a}\cdot\boldsymbol{b}}\over |\boldsymbol{b}|^2}\boldsymbol{b}=\left({\boldsymbol{a}\cdot{\boldsymbol{b} \over |\boldsymbol{b}|}}\right)\left({\boldsymbol{b} \over |\boldsymbol{b}|}\right)=(\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}$$ 124 125## Vector proofs 126 127**Concurrent lines -** $\ge$ 3 lines intersect at a single point 128**Collinear points -** $\ge$ 3 points lie on the same line 129 130Useful vector properties: 131 132- If $\boldsymbol{a}$ and $\boldsymbol{b}$ are parallel, then $\boldsymbol{b}=k\boldsymbol{a}$ for some $k \in \mathbb{R} \setminus \{0\}$ 133- If $\boldsymbol{a}$ and $\boldsymbol{b}$ are parallel with at least one point in common, then they lie on the same straight line 134- Two vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ are perpendicular if $\boldsymbol{a} \cdot \boldsymbol{b}=0$ 135- $\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2$ 136 137 138 139