spec / vectors.mdon commit vectors ref (baa6148)
   1---
   2geometry: margin=2cm
   3<!-- columns: 2 -->
   4graphics: yes
   5tables: yes
   6author: Andrew Lorimer
   7classoption: twocolumn
   8
   9---
  10
  11# Vectors
  12
  13- **vector:** a directed line segment  
  14- arrow indicates direction
  15- length indicates magnitude
  16- notated as $\vec{a}, \widetilde{A}$
  17- column notation: $\begin{bmatrix}
  18       x \\ y
  19     \end{bmatrix}$
  20- vectors with equal magnitude and direction are equivalent
  21
  22
  23![](graphics/vectors-intro.png)
  24
  25## Vector addition
  26
  27$\boldsymbol{u} + \boldsymbol{v}$ can be represented by drawing each vector head to tail then joining the lines.  
  28Addition is commutative (parallelogram)
  29
  30## Scalar multiplication
  31
  32For $k \in \mathbb{R}^+$, $k\boldsymbol{u}$ has the same direction as $\boldsymbol{u}$ but length is multiplied by a factor of $k$.
  33
  34When multiplied by $k < 0$, direction is reversed and length is multplied by $k$.
  35
  36## Vector subtraction
  37
  38To find $\boldsymbol{u} - \boldsymbol{v}$, add $\boldsymbol{-v}$ to $\boldsymbol{u}$
  39
  40## Parallel vectors
  41
  42Parallel vectors have same direction or opposite direction.
  43
  44**Two non-zero vectors $\boldsymbol{u}$ and $\boldsymbol{v}$ are parallel if there is some $k \in \mathbb{R} \setminus \{0\}$ such at $\boldsymbol{u} = k \boldsymbol{v}$**
  45
  46## Position vectors
  47
  48Vectors may describe a position relative to $O$.
  49
  50For a point $A$, the position vector is $\boldsymbol{OA}$
  51
  52## Linear combinations of non-parallel vectors
  53
  54If two non-zero vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ are not parallel, then:
  55
  56$$m\boldsymbol{a} + n\boldsymbol{b} = p \boldsymbol{a} + q \boldsymbol{b}\quad\text{implies}\quad m = p, \> n = q$$
  57
  58## Column vector notation
  59
  60A vector between points $A(x_1,y_1), \> B(x_2,y_2)$ can be represented as $\begin{bmatrix}x_2-x_1\\ y_2-y_1 \end{bmatrix}$
  61
  62## Component notation
  63
  64A vector $\boldsymbol{u} = \begin{bmatrix}x\\ y \end{bmatrix}$ can be written as $\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}$.  
  65$\boldsymbol{u}$ is the sum of two components $x\boldsymbol{i}$ and $y\boldsymbol{j}$  
  66Magnitude of vector $\boldsymbol{u} = x\boldsymbol{i} + y\boldsymbol{j}$ is denoted by $|u|=\sqrt{x^2+y^2}$
  67
  68Basic algebra applies:  
  69$(x\boldsymbol{i} + y\boldsymbol{j}) + (m\boldsymbol{i} + n\boldsymbol{j}) = (x + m)\boldsymbol{i} + (y+n)\boldsymbol{j}$  
  70Two vectors equal if and only if their components are equal.
  71
  72## Unit vectors
  73
  74A vector of length 1. $\boldsymbol{i}$ and $\boldsymbol{j}$ are unit vectors.
  75
  76A unit vector in direction of $\boldsymbol{a}$ is denoted by $\hat{\boldsymbol{a}}$:
  77
  78$$\hat{\boldsymbol{a}}={1 \over {|\boldsymbol{a}|}}\boldsymbol{a}\quad (\implies |\hat{\boldsymbol{a}}|=1)$$
  79
  80Also, unit vector of $\boldsymbol{a}$ can be defined by $\boldsymbol{a} \cdot {|\boldsymbol{a}|}$
  81
  82## Scalar products / dot products
  83
  84If $\boldsymbol{a} = a_i \boldsymbol{i} + a_2 \boldsymbol{j}$ and $\boldsymbol{b} = b_i \boldsymbol{i} + b_2 \boldsymbol{j}$, the dot product is:
  85$$\boldsymbol{a} \cdot \boldsymbol{b} = a_1 b_1 + a_2 b_2$$
  86
  87Produces a real number, not a vector.
  88
  89$$\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2$$
  90
  91## Scalar product properties
  92
  931. $k(\boldsymbol{a\cdot b})=(k\boldsymbol{a})\cdot \boldsymbol{b}=\boldsymbol{a}\cdot (k{b})$
  942. $\boldsymbol{a \cdot 0}=0$
  953. $\boldsymbol{a \cdot (b + c)}=\boldsymbol{a \cdot b + a \cdot c}$
  96
  97For parallel vectors $\boldsymbol{a}$ and $\boldsymbol{b}$:  
  98$\boldsymbol{a \cdot b}=\{
  99                \begin{array}{ll}
 100                  |\boldsymbol{a}||\boldsymbol{b}| \hspace{2.8em} \text{if same direction} \\
 101                  -|\boldsymbol{a}||\boldsymbol{b}| \hspace{2em} \text{if opposite directions} \\
 102                \end{array}$
 103
 104## Geometric scalar products
 105
 106$$\boldsymbol{a} \cdot \boldsymbol{b} = |\boldsymbol{a}| |\boldsymbol{b}| \cos \theta$$
 107
 108where $0 \le \theta \le \pi$
 109
 110## Perpendicular vectors
 111
 112If $\boldsymbol{a} \cdot \boldsymbol{b} = 0$, then $\boldsymbol{a} \perp \boldsymbol{b}$ (since $\cos 90 = 0$)
 113
 114## Finding angle between vectors
 115
 116$$\cos \theta = {{\boldsymbol{a} \cdot \boldsymbol{b}} \over {|\boldsymbol{a}| |\boldsymbol{b}|}} = {{a_1 b_1 + a_2 b_2} \over {|\boldsymbol{a}| |\boldsymbol{b}|}}$$
 117
 118
 119## Vector projections
 120
 121Vector resolute of $\boldsymbol{a}$ in direction of $\boldsymbol{b}$ is magnitude of $\boldsymbol{a}$ in direction of $\boldsymbol{b}$.
 122
 123$$\boldsymbol{u}={{\boldsymbol{a}\cdot\boldsymbol{b}}\over |\boldsymbol{b}|^2}\boldsymbol{b}=\left({\boldsymbol{a}\cdot{\boldsymbol{b} \over |\boldsymbol{b}|}}\right)\left({\boldsymbol{b} \over |\boldsymbol{b}|}\right)=(\boldsymbol{a} \cdot \hat{\boldsymbol{b}})\hat{\boldsymbol{b}}$$
 124
 125## Vector proofs
 126
 127**Concurrent lines -** $\ge$ 3 lines intersect at a single point  
 128**Collinear points -** $\ge$ 3 points lie on the same line
 129
 130Useful vector properties:
 131
 132- If $\boldsymbol{a}$ and $\boldsymbol{b}$ are parallel, then $\boldsymbol{b}=k\boldsymbol{a}$ for some $k \in \mathbb{R} \setminus \{0\}$
 133- If $\boldsymbol{a}$ and $\boldsymbol{b}$ are parallel with at least one point in common, then they lie on the same straight line
 134- Two vectors $\boldsymbol{a}$ and $\boldsymbol{b}$ are perpendicular if $\boldsymbol{a} \cdot \boldsymbol{b}=0$
 135- $\boldsymbol{a} \cdot \boldsymbol{a} = |\boldsymbol{a}|^2$
 136
 137
 138
 139