physics / midyear.texon commit finalise midyear reference & tidy tex code (e34d8ee)
   1\documentclass[a4paper]{article}
   2\usepackage{multicol}
   3\usepackage[cm]{fullpage}
   4\usepackage{amsmath}
   5\usepackage{amssymb}
   6\setlength{\parindent}{0cm}
   7\usepackage[nodisplayskipstretch]{setspace}
   8\setstretch{1.3}
   9\usepackage{graphicx}
  10\usepackage{wrapfig}
  11\usepackage{enumitem}
  12\setitemize{noitemsep,topsep=0pt,parsep=0pt,partopsep=0pt,leftmargin=5pt}
  13
  14
  15\begin{document}
  16
  17\pagenumbering{gobble}
  18\begin{multicols}{3}
  19
  20% +++++++++++++++++++++++
  21  
  22{\huge Physics}\hfill Andrew Lorimer\hspace{2em}
  23
  24% +++++++++++++++++++++++
  25\section{Motion}
  26
  27  \subsection*{Inclined planes}
  28    $F = m g \sin\theta - F_{frict} = m a$
  29
  30% -----------------------
  31  \subsection*{Banked tracks}
  32
  33    \includegraphics[height=4cm]{/mnt/andrew/graphics/banked-track.png}
  34
  35    $\theta = \tan^{-1} {{v^2} \over rg}$ (also for objects on string)
  36
  37    $\Sigma F$ always acts towards centre, but not necessarily horizontally
  38
  39    $\Sigma F = {{mv^2} \over r} = mg \tan \theta$
  40
  41    Design speed $v = \sqrt{gr\tan\theta}$
  42
  43% -----------------------
  44  \subsection*{Work and energy}
  45
  46    $W=Fx=\Delta \Sigma E$ (work)
  47
  48    $E_K = {1 \over 2}mv^2$ (kinetic)
  49
  50    $E_G = mgh$ (potential)
  51
  52    $\Sigma E = {1 \over 2} mv^2 + mgh$ (energy transfer)
  53
  54% -----------------------
  55  \subsection*{Horizontal motion}
  56
  57    $\operatorname{m/s} \times 3.6 = \operatorname{km/h}$
  58
  59    $v = {{2 \pi r} \over T}$
  60
  61    $f = {1 \over T}, \quad T = {1 \over f}$
  62
  63    $a_{centrip} = {v^2 \over r} = {{4 \pi^2 r} \over T^2}$
  64
  65    $\Sigma F$ towards centre, $v$ tangential
  66
  67    $F_{centrip} = {{mv^2} \over r} = {{4 \pi^2 rm} \over T^2}$
  68
  69    \includegraphics[height=4cm]{/mnt/andrew/graphics/circ-forces.png}
  70
  71% -----------------------
  72  \subsection*{Vertical circular motion}
  73
  74    $T =$ tension, e.g. circular pendulum
  75
  76    $T+mg = {{mv^2}\over r}$ at highest point
  77
  78    $T-mg = {{mv^2} \over r}$ at lowest point
  79
  80% -----------------------
  81  \subsection*{Projectile motion}
  82    \begin{itemize}
  83      \item{horizontal component of velocity is constant if no air resistance}
  84      \item{vertical component affected by gravity: $a_y = -g$}
  85    \end{itemize}
  86
  87    \begin{align*}
  88      v=\sqrt{v^2_x + v^2_y} \tag{vectors} \\
  89      h={{u^2\sin \theta ^2}\over 2g} \tag{max height}\\
  90      y=ut \sin \theta-{1 \over 2}gt^2 \tag{time of flight} \\
  91      d={v^2 \over g}\sin \theta \tag{horiz. range} \\
  92    \end{align*}
  93
  94    \includegraphics[height=3.2cm]{/mnt/andrew/graphics/projectile-motion.png}
  95
  96% -----------------------
  97  \subsection*{Pulley-mass system}
  98
  99    $a = {{m_2g} \over {m_1 + m_2}}$ where $m_2$ is suspended
 100
 101    $\Sigma F = m_2g-m_1g=\Sigma ma$ (solve)
 102
 103% -----------------------
 104  \subsection*{Graphs}
 105    \begin{itemize}
 106      \item{Force-time: $A=\Delta \rho$}
 107      \item{Force-disp: $A=W$}
 108      \item{Force-ext: $m=k,\quad A=E_{spr}$}
 109      \item{Force-dist: $A=\Delta \operatorname{gpe}$}
 110      \item{Field-dist: $A=\Delta \operatorname{gpe} / \operatorname{kg}$}
 111    \end{itemize}
 112
 113% -----------------------
 114  \subsection*{Hooke's law}
 115
 116  $F=-kx$
 117
 118  $E_{elastic} = {1 \over 2}kx^2$
 119
 120% -----------------------
 121  \subsection*{Motion equations}
 122
 123    \begin{tabular}{ l r }
 124      $v=u+at$ & $x$ \\
 125      $x = {1 \over 2}(v+u)t$ & $a$ \\
 126      $x=ut+{1 \over 2}at^2$ & $v$ \\
 127      $x=vt-{1 \over 2}at^2$ & $u$ \\
 128      $v^2=u^2+2ax$ & $t$ \\
 129    \end{tabular}
 130
 131% -----------------------
 132  \subsection*{Momentum}
 133
 134    $\rho = mv$
 135
 136    $\operatorname{impulse} = \Delta \rho, \quad F \Delta t = m \Delta v$
 137
 138    Momentum is conserved.
 139
 140    $\Sigma E_{K \operatorname{before}} = \Sigma E_{K \operatorname{after}}$ if elastic
 141
 142    $n$-body collisions: $\rho$ of each body is independent
 143
 144% ++++++++++++++++++++++
 145\section{Relativity}
 146
 147  \subsection*{Postulates}
 148    1. Laws of physics are constant in all intertial reference frames
 149
 150    2. Speed of light $c$ is the same to all observers (Michelson-Morley)
 151
 152    $\therefore , t$ must dilate as speed changes
 153
 154    {\bf Inertial reference frame} - $a=0$
 155
 156    {\bf Proper time $t_0$ $\vert$ length $l_0$} - measured by observer in same frame as events
 157
 158% -----------------------
 159  \subsection*{Lorentz factor}
 160
 161    $$\gamma = {1 \over {\sqrt{1-{v^2 \over c^2}}}}$$
 162
 163    $t=t_0 \gamma$ ($t$ longer in moving frame)
 164
 165    $l={l_0 \over \gamma}$ ($l$ contracts $\parallel v$: shorter in moving frame)
 166
 167    $m=m_0 \gamma$ (mass dilation)
 168
 169    $$v = c\sqrt{1-{1 \over \gamma^2}}$$
 170
 171% -----------------------
 172  \subsection*{Energy and work}
 173
 174    $E_0 = mc^2$ (rest)
 175
 176    $E_{total} = E_K + E_{rest} = \gamma mc^2$
 177
 178    $E_K = (\gamma - 1)mc^2$
 179
 180    $W = \Delta E = \Delta mc^2$
 181
 182% -----------------------
 183  \subsection*{Relativistic momentum}
 184
 185    $$\rho = {mv \over \sqrt{1-{v^2 \over c^2}}}= {\gamma mv} = {\gamma \rho_0}$$
 186
 187    $\rho \rightarrow \infty$ as $v \rightarrow c$
 188
 189    $v=c$ is impossible (requires $E=\infty$)
 190
 191    $$v={\rho \over {m\sqrt{1+{p^2 \over {m^2 c^2}}}}}$$
 192
 193% -----------------------
 194  \subsection*{Fusion and fission}
 195
 196    $1 \operatorname{eV} = 1.6 \times 10^{-19} \operatorname{J}$
 197
 198    e- accelerated with $x$ V is given $x$ eV
 199
 200% -----------------------
 201  \subsection*{High-altitude muons}
 202    \begin{itemize}
 203      {\item $t$ dilation - more muons reach Earth than expected}
 204      {\item normal half-life is $2.2 \operatorname{\mu s}$ in stationary frame}
 205      {\item at $v \approx c$, muons observed from Earth have halflife $> 2.2 \operatorname{\mu s}$}
 206      {\item slower time - more time to travel, so muons reach surface}
 207    \end{itemize}
 208
 209% +++++++++++++++++++++++
 210\section{Fields and power}
 211
 212  \subsection*{Non-contact forces}
 213    \begin{itemize}
 214      {\item electric fields (dipoles \& monopoles)}
 215      {\item magnetic fields (dipoles only)}
 216      {\item gravitational fields (monopoles only)}
 217    \end{itemize}
 218
 219    \vspace{1em}
 220
 221    \begin{itemize}
 222      \item monopoles: lines towards centre
 223      \item dipoles: field lines $+ \rightarrow -$ or $\operatorname{N} \rightarrow \operatorname{S}$ (or perpendicular to wire)
 224      \item closer field lines means larger force
 225      \item dot means out of page, cross means into page
 226      \item +ve corresponds to N pole
 227    \end{itemize}
 228
 229% -----------------------
 230  \subsection*{Gravity}
 231
 232    \[F_g=G{{m_1m_2}\over r^2}\tag{grav. force}\]
 233
 234    \[g={F_g \over m}=G{M_{\operatorname{planet}} \over r^2}\tag{grav. acc.}\]
 235
 236    \[E_g = mg \Delta h\tag{gpe}\]
 237
 238    \[W = \Delta E_g = Fx\tag{work}\]
 239
 240    \[w=m(g-a) \tag{app. weight}\]
 241
 242% -----------------------
 243  \subsection*{Satellites}
 244
 245    \[v=\sqrt{GM \over r} = \sqrt{gr} = {{2 \pi r} \over T}\]
 246
 247    \[T={\sqrt{4 \pi^2 r^2} \over {GM}}\tag{period}\]
 248
 249    \[\sqrt[3]{{GMT^2}\over{4\pi^2}}\tag{radius}\]
 250
 251% -----------------------
 252  \subsection*{Magnetic fields}
 253    \begin{itemize}
 254      \item field strength $B$ measured in tesla
 255      \item magnetic flux $\Phi$ measured in weber
 256      \item charge $q$ measured in coulombs
 257      \item emf $\mathcal{E}$ measured in volts
 258    \end{itemize}
 259
 260    \[{E_1 \over E_2}={r_1 \over r_2}^2\]
 261
 262    \[F=qvB\tag{force on moving charged particles}\]
 263
 264    if $B {\not \perp} A, \Phi \rightarrow 0$ \hspace{1em}, \hspace{1em} if $B \parallel A, \Phi = 0$
 265
 266
 267    \includegraphics[height=2cm]{/mnt/andrew/graphics/field-lines.png}
 268
 269% -----------------------
 270  \subsection*{Electric fields}
 271
 272    \begin{align*}
 273      F=qE \tag{$E$ = strength} \\
 274      W=q_{\operatorname{point}}\Delta V \tag{in field or points} \\
 275      F=k{{q_1q_2}\over r^2}\tag{force between $q_{1,2}$} \\
 276      E=k{Q \over r^2} \tag{$r=||EQ||$} \\
 277      F=BInl \tag{force on a coil} \\
 278      \Phi = B_{\perp}A\tag{magnetic flux} \\
 279      \mathcal{E} = -N{{\Delta \Phi}\over{\Delta t}} \tag{induced emf} \\
 280      {V_p \over V_s}={N_p \over N_s}={I_s \over I_p} \tag{xfmr coil ratios} \\
 281    \end{align*}
 282
 283    \textbf{Lenz's law:}  ``$-n$'' in Faraday - emf opposes $\Delta \Phi$
 284
 285    \textbf{Eddy currents:} counter movement within a field
 286
 287    \textbf{Right hand grip:} thumb points to north or $I$
 288
 289    \textbf{Right hand slap:} field, current, force are $\perp$
 290
 291    \textbf{Flux-time graphs:} gradient $\times n = \operatorname{emf}$
 292
 293    \textbf{Transformers:} core strengthens \& focuses $\Phi$
 294
 295% -----------------------
 296  \subsection*{Power transmission}
 297
 298    \begin{align*}
 299      V_{\operatorname{rms}}={V_{\operatorname{p\rightarrow p}}\over \sqrt{2}} \\
 300      P_{\operatorname{loss}} = \Delta V I = I^2 R = {{\Delta V^2} \over R} \\
 301    \end{align*}
 302
 303    Use high-$V$ side for correct $|V_{drop}|$
 304
 305    \begin{itemize}
 306      {\item Parallel - voltage is constant}
 307      {\item Series - voltage is shared within branch}
 308    \end{itemize}
 309
 310    \includegraphics[height=4cm]{/mnt/andrew/graphics/ac-generator.png}
 311
 312% -----------------------
 313  \subsection*{Motors}
 314% \begin{wrapfigure}{r}{-0.1\textwidth}
 315
 316    \includegraphics[height=4cm]{/mnt/andrew/graphics/dc-motor-2.png}
 317      \includegraphics[height=3cm]{/mnt/andrew/graphics/ac-motor.png} \\
 318% \end{wrapfigure}
 319    \textbf{DC:} split ring (two halves)
 320
 321% \begin{wrapfigure}{r}{0.3\textwidth}
 322
 323% \end{wrapfigure}
 324    \textbf{AC:} slip ring (separate rings with constant contact)
 325
 326
 327\end{multicols}
 328\end{document}