1\documentclass[a4paper]{article}
2\usepackage{multicol}
3\usepackage[cm]{fullpage}
4\usepackage{amsmath}
5\usepackage{amssymb}
6\setlength{\parindent}{0cm}
7\usepackage[nodisplayskipstretch]{setspace}
8\setstretch{1.3}
9\usepackage{graphicx}
10\usepackage{wrapfig}
11\usepackage{enumitem}
12\setitemize{noitemsep,topsep=0pt,parsep=0pt,partopsep=0pt,leftmargin=5pt}
13
14
15\begin{document}
16
17\pagenumbering{gobble}
18\begin{multicols}{3}
19
20% +++++++++++++++++++++++
21
22{\huge Physics}\hfill Andrew Lorimer\hspace{2em}
23
24% +++++++++++++++++++++++
25\section{Motion}
26
27 \subsection*{Inclined planes}
28 $F = m g \sin\theta - F_{frict} = m a$
29
30% -----------------------
31 \subsection*{Banked tracks}
32
33 \includegraphics[height=4cm]{/mnt/andrew/graphics/banked-track.png}
34
35 $\theta = \tan^{-1} {{v^2} \over rg}$ (also for objects on string)
36
37 $\Sigma F$ always acts towards centre, but not necessarily horizontally
38
39 $\Sigma F = {{mv^2} \over r} = mg \tan \theta$
40
41 Design speed $v = \sqrt{gr\tan\theta}$
42
43% -----------------------
44 \subsection*{Work and energy}
45
46 $W=Fx=\Delta \Sigma E$ (work)
47
48 $E_K = {1 \over 2}mv^2$ (kinetic)
49
50 $E_G = mgh$ (potential)
51
52 $\Sigma E = {1 \over 2} mv^2 + mgh$ (energy transfer)
53
54% -----------------------
55 \subsection*{Horizontal motion}
56
57 $\operatorname{m/s} \times 3.6 = \operatorname{km/h}$
58
59 $v = {{2 \pi r} \over T}$
60
61 $f = {1 \over T}, \quad T = {1 \over f}$
62
63 $a_{centrip} = {v^2 \over r} = {{4 \pi^2 r} \over T^2}$
64
65 $\Sigma F$ towards centre, $v$ tangential
66
67 $F_{centrip} = {{mv^2} \over r} = {{4 \pi^2 rm} \over T^2}$
68
69 \includegraphics[height=4cm]{/mnt/andrew/graphics/circ-forces.png}
70
71% -----------------------
72 \subsection*{Vertical circular motion}
73
74 $T =$ tension, e.g. circular pendulum
75
76 $T+mg = {{mv^2}\over r}$ at highest point
77
78 $T-mg = {{mv^2} \over r}$ at lowest point
79
80% -----------------------
81 \subsection*{Projectile motion}
82 \begin{itemize}
83 \item{horizontal component of velocity is constant if no air resistance}
84 \item{vertical component affected by gravity: $a_y = -g$}
85 \end{itemize}
86
87 \begin{align*}
88 v=\sqrt{v^2_x + v^2_y} \tag{vectors} \\
89 h={{u^2\sin \theta ^2}\over 2g} \tag{max height}\\
90 y=ut \sin \theta-{1 \over 2}gt^2 \tag{time of flight} \\
91 d={v^2 \over g}\sin \theta \tag{horiz. range} \\
92 \end{align*}
93
94 \includegraphics[height=3.2cm]{/mnt/andrew/graphics/projectile-motion.png}
95
96% -----------------------
97 \subsection*{Pulley-mass system}
98
99 $a = {{m_2g} \over {m_1 + m_2}}$ where $m_2$ is suspended
100
101 $\Sigma F = m_2g-m_1g=\Sigma ma$ (solve)
102
103% -----------------------
104 \subsection*{Graphs}
105 \begin{itemize}
106 \item{Force-time: $A=\Delta \rho$}
107 \item{Force-disp: $A=W$}
108 \item{Force-ext: $m=k,\quad A=E_{spr}$}
109 \item{Force-dist: $A=\Delta \operatorname{gpe}$}
110 \item{Field-dist: $A=\Delta \operatorname{gpe} / \operatorname{kg}$}
111 \end{itemize}
112
113% -----------------------
114 \subsection*{Hooke's law}
115
116 $F=-kx$
117
118 $E_{elastic} = {1 \over 2}kx^2$
119
120% -----------------------
121 \subsection*{Motion equations}
122
123 \begin{tabular}{ l r }
124 $v=u+at$ & $x$ \\
125 $x = {1 \over 2}(v+u)t$ & $a$ \\
126 $x=ut+{1 \over 2}at^2$ & $v$ \\
127 $x=vt-{1 \over 2}at^2$ & $u$ \\
128 $v^2=u^2+2ax$ & $t$ \\
129 \end{tabular}
130
131% -----------------------
132 \subsection*{Momentum}
133
134 $\rho = mv$
135
136 $\operatorname{impulse} = \Delta \rho, \quad F \Delta t = m \Delta v$
137
138 Momentum is conserved.
139
140 $\Sigma E_{K \operatorname{before}} = \Sigma E_{K \operatorname{after}}$ if elastic
141
142 $n$-body collisions: $\rho$ of each body is independent
143
144% ++++++++++++++++++++++
145\section{Relativity}
146
147 \subsection*{Postulates}
148 1. Laws of physics are constant in all intertial reference frames
149
150 2. Speed of light $c$ is the same to all observers (Michelson-Morley)
151
152 $\therefore , t$ must dilate as speed changes
153
154 {\bf Inertial reference frame} - $a=0$
155
156 {\bf Proper time $t_0$ $\vert$ length $l_0$} - measured by observer in same frame as events
157
158% -----------------------
159 \subsection*{Lorentz factor}
160
161 $$\gamma = {1 \over {\sqrt{1-{v^2 \over c^2}}}}$$
162
163 $t=t_0 \gamma$ ($t$ longer in moving frame)
164
165 $l={l_0 \over \gamma}$ ($l$ contracts $\parallel v$: shorter in moving frame)
166
167 $m=m_0 \gamma$ (mass dilation)
168
169 $$v = c\sqrt{1-{1 \over \gamma^2}}$$
170
171% -----------------------
172 \subsection*{Energy and work}
173
174 $E_0 = mc^2$ (rest)
175
176 $E_{total} = E_K + E_{rest} = \gamma mc^2$
177
178 $E_K = (\gamma - 1)mc^2$
179
180 $W = \Delta E = \Delta mc^2$
181
182% -----------------------
183 \subsection*{Relativistic momentum}
184
185 $$\rho = {mv \over \sqrt{1-{v^2 \over c^2}}}= {\gamma mv} = {\gamma \rho_0}$$
186
187 $\rho \rightarrow \infty$ as $v \rightarrow c$
188
189 $v=c$ is impossible (requires $E=\infty$)
190
191 $$v={\rho \over {m\sqrt{1+{p^2 \over {m^2 c^2}}}}}$$
192
193% -----------------------
194 \subsection*{Fusion and fission}
195
196 $1 \operatorname{eV} = 1.6 \times 10^{-19} \operatorname{J}$
197
198 e- accelerated with $x$ V is given $x$ eV
199
200% -----------------------
201 \subsection*{High-altitude muons}
202 \begin{itemize}
203 {\item $t$ dilation - more muons reach Earth than expected}
204 {\item normal half-life is $2.2 \operatorname{\mu s}$ in stationary frame}
205 {\item at $v \approx c$, muons observed from Earth have halflife $> 2.2 \operatorname{\mu s}$}
206 {\item slower time - more time to travel, so muons reach surface}
207 \end{itemize}
208
209% +++++++++++++++++++++++
210\section{Fields and power}
211
212 \subsection*{Non-contact forces}
213 \begin{itemize}
214 {\item electric fields (dipoles \& monopoles)}
215 {\item magnetic fields (dipoles only)}
216 {\item gravitational fields (monopoles only)}
217 \end{itemize}
218
219 \vspace{1em}
220
221 \begin{itemize}
222 \item monopoles: lines towards centre
223 \item dipoles: field lines $+ \rightarrow -$ or $\operatorname{N} \rightarrow \operatorname{S}$ (or perpendicular to wire)
224 \item closer field lines means larger force
225 \item dot means out of page, cross means into page
226 \item +ve corresponds to N pole
227 \end{itemize}
228
229% -----------------------
230 \subsection*{Gravity}
231
232 \[F_g=G{{m_1m_2}\over r^2}\tag{grav. force}\]
233
234 \[g={F_g \over m}=G{M_{\operatorname{planet}} \over r^2}\tag{grav. acc.}\]
235
236 \[E_g = mg \Delta h\tag{gpe}\]
237
238 \[W = \Delta E_g = Fx\tag{work}\]
239
240 \[w=m(g-a) \tag{app. weight}\]
241
242% -----------------------
243 \subsection*{Satellites}
244
245 \[v=\sqrt{GM \over r} = \sqrt{gr} = {{2 \pi r} \over T}\]
246
247 \[T={\sqrt{4 \pi^2 r^2} \over {GM}}\tag{period}\]
248
249 \[\sqrt[3]{{GMT^2}\over{4\pi^2}}\tag{radius}\]
250
251% -----------------------
252 \subsection*{Magnetic fields}
253 \begin{itemize}
254 \item field strength $B$ measured in tesla
255 \item magnetic flux $\Phi$ measured in weber
256 \item charge $q$ measured in coulombs
257 \item emf $\mathcal{E}$ measured in volts
258 \end{itemize}
259
260 \[{E_1 \over E_2}={r_1 \over r_2}^2\]
261
262 \[F=qvB\tag{force on moving charged particles}\]
263
264 if $B {\not \perp} A, \Phi \rightarrow 0$ \hspace{1em}, \hspace{1em} if $B \parallel A, \Phi = 0$
265
266
267 \includegraphics[height=2cm]{/mnt/andrew/graphics/field-lines.png}
268
269% -----------------------
270 \subsection*{Electric fields}
271
272 \begin{align*}
273 F=qE \tag{$E$ = strength} \\
274 W=q_{\operatorname{point}}\Delta V \tag{in field or points} \\
275 F=k{{q_1q_2}\over r^2}\tag{force between $q_{1,2}$} \\
276 E=k{Q \over r^2} \tag{$r=||EQ||$} \\
277 F=BInl \tag{force on a coil} \\
278 \Phi = B_{\perp}A\tag{magnetic flux} \\
279 \mathcal{E} = -N{{\Delta \Phi}\over{\Delta t}} \tag{induced emf} \\
280 {V_p \over V_s}={N_p \over N_s}={I_s \over I_p} \tag{xfmr coil ratios} \\
281 \end{align*}
282
283 \textbf{Lenz's law:} ``$-n$'' in Faraday - emf opposes $\Delta \Phi$
284
285 \textbf{Eddy currents:} counter movement within a field
286
287 \textbf{Right hand grip:} thumb points to north or $I$
288
289 \textbf{Right hand slap:} field, current, force are $\perp$
290
291 \textbf{Flux-time graphs:} gradient $\times n = \operatorname{emf}$
292
293 \textbf{Transformers:} core strengthens \& focuses $\Phi$
294
295% -----------------------
296 \subsection*{Power transmission}
297
298 \begin{align*}
299 V_{\operatorname{rms}}={V_{\operatorname{p\rightarrow p}}\over \sqrt{2}} \\
300 P_{\operatorname{loss}} = \Delta V I = I^2 R = {{\Delta V^2} \over R} \\
301 \end{align*}
302
303 Use high-$V$ side for correct $|V_{drop}|$
304
305 \begin{itemize}
306 {\item Parallel - voltage is constant}
307 {\item Series - voltage is shared within branch}
308 \end{itemize}
309
310 \includegraphics[height=4cm]{/mnt/andrew/graphics/ac-generator.png}
311
312% -----------------------
313 \subsection*{Motors}
314% \begin{wrapfigure}{r}{-0.1\textwidth}
315
316 \includegraphics[height=4cm]{/mnt/andrew/graphics/dc-motor-2.png}
317 \includegraphics[height=3cm]{/mnt/andrew/graphics/ac-motor.png} \\
318% \end{wrapfigure}
319 \textbf{DC:} split ring (two halves)
320
321% \begin{wrapfigure}{r}{0.3\textwidth}
322
323% \end{wrapfigure}
324 \textbf{AC:} slip ring (separate rings with constant contact)
325
326
327\end{multicols}
328\end{document}