-This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2018/Arch Linux) (preloaded format=pdflatex 2018.7.3) 14 JUL 2018 15:11
+This is pdfTeX, Version 3.14159265-2.6-1.40.19 (TeX Live 2018/Arch Linux) (preloaded format=pdflatex 2018.7.3) 19 JUL 2018 18:08
entering extended mode
restricted \write18 enabled.
file:line:error style messages enabled.
(/usr/share/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Live
))
-LaTeX Font Info: Try loading font information for U+msa on input line 23.
+LaTeX Font Info: Try loading font information for U+msa on input line 28.
(/usr/share/texmf-dist/tex/latex/amsfonts/umsa.fd
File: umsa.fd 2013/01/14 v3.01 AMS symbols A
)
-LaTeX Font Info: Try loading font information for U+msb on input line 23.
+LaTeX Font Info: Try loading font information for U+msb on input line 28.
(/usr/share/texmf-dist/tex/latex/amsfonts/umsb.fd
File: umsb.fd 2013/01/14 v3.01 AMS symbols B
)
</mnt/andrew/graphics/banked-track.png, id=1, 722.7pt x 542.025pt>
File: /mnt/andrew/graphics/banked-track.png Graphic file (type png)
<use /mnt/andrew/graphics/banked-track.png>
-Package pdftex.def Info: /mnt/andrew/graphics/banked-track.png used on input line 29.
+Package pdftex.def Info: /mnt/andrew/graphics/banked-track.png used on input line 33.
(pdftex.def) Requested size: 151.73839pt x 113.81102pt.
Package amsmath Warning: Foreign command \over;
(amsmath) \frac or \genfrac should be used instead
-(amsmath) on input line 30.
-
-
-Underfull \hbox (badness 10000) in paragraph at lines 29--31
-[]
- []
+(amsmath) on input line 35.
</mnt/andrew/graphics/circ-forces.png, id=2, 446.66875pt x 439.6425pt>
File: /mnt/andrew/graphics/circ-forces.png Graphic file (type png)
<use /mnt/andrew/graphics/circ-forces.png>
-Package pdftex.def Info: /mnt/andrew/graphics/circ-forces.png used on input line 59.
+Package pdftex.def Info: /mnt/andrew/graphics/circ-forces.png used on input line 69.
(pdftex.def) Requested size: 115.62677pt x 113.81102pt.
-LaTeX Font Info: Try loading font information for OMS+cmr on input line 69.
+LaTeX Font Info: Try loading font information for OMS+cmr on input line 83.
(/usr/share/texmf-dist/tex/latex/base/omscmr.fd
File: omscmr.fd 2014/09/29 v2.5h Standard LaTeX font definitions
)
LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <10> not available
-(Font) Font shape `OMS/cmsy/m/n' tried instead on input line 69.
+(Font) Font shape `OMS/cmsy/m/n' tried instead on input line 83.
</mnt/andrew/graphics/projectile-motion.png, id=3, 512.66531pt x 283.0575pt>
File: /mnt/andrew/graphics/projectile-motion.png Graphic file (type png)
<use /mnt/andrew/graphics/projectile-motion.png>
-Package pdftex.def Info: /mnt/andrew/graphics/projectile-motion.png used on input line 81.
+Package pdftex.def Info: /mnt/andrew/graphics/projectile-motion.png used on input line 94.
(pdftex.def) Requested size: 164.9011pt x 91.04872pt.
-Underfull \hbox (badness 5519) in paragraph at lines 80--82
-[]$\OML/cmm/m/it/10 d \OT1/cmr/m/n/10 = []\OML/cmm/m/it/10 sin^^R$ \OT1/cmr/m/n/10 (hor-i-zon-tal range)
- []
-
-
-Overfull \hbox (0.85123pt too wide) in paragraph at lines 80--82
-[]
+Overfull \hbox (0.85123pt too wide) in paragraph at lines 94--95
+[][]
[]
[1
</mnt/andrew/graphics/field-lines.png, id=21, 594.22pt x 195.73125pt>
File: /mnt/andrew/graphics/field-lines.png Graphic file (type png)
<use /mnt/andrew/graphics/field-lines.png>
-Package pdftex.def Info: /mnt/andrew/graphics/field-lines.png used on input line 249.
+Package pdftex.def Info: /mnt/andrew/graphics/field-lines.png used on input line 267.
(pdftex.def) Requested size: 172.75461pt x 56.9055pt.
-Overfull \hbox (8.70474pt too wide) in paragraph at lines 249--250
+Overfull \hbox (8.70474pt too wide) in paragraph at lines 267--268
[][]
[]
-
-Overfull \hbox (9.28535pt too wide) detected at line 284
-[]
- []
-
</mnt/andrew/graphics/ac-generator.png, id=23, 312.16624pt x 236.885pt>
File: /mnt/andrew/graphics/ac-generator.png Graphic file (type png)
<use /mnt/andrew/graphics/ac-generator.png>
-Package pdftex.def Info: /mnt/andrew/graphics/ac-generator.png used on input line 291.
+Package pdftex.def Info: /mnt/andrew/graphics/ac-generator.png used on input line 310.
(pdftex.def) Requested size: 149.97623pt x 113.81102pt.
</mnt/andrew/graphics/dc-motor-2.png, id=24, 102.3825pt x 75.6426pt>
File: /mnt/andrew/graphics/dc-motor-2.png Graphic file (type png)
<use /mnt/andrew/graphics/dc-motor-2.png>
-Package pdftex.def Info: /mnt/andrew/graphics/dc-motor-2.png used on input line 296.
+Package pdftex.def Info: /mnt/andrew/graphics/dc-motor-2.png used on input line 316.
(pdftex.def) Requested size: 154.04672pt x 113.81102pt.
</mnt/andrew/graphics/ac-motor.png, id=25, 101.6598pt x 76.1244pt>
File: /mnt/andrew/graphics/ac-motor.png Graphic file (type png)
<use /mnt/andrew/graphics/ac-motor.png>
-Package pdftex.def Info: /mnt/andrew/graphics/ac-motor.png used on input line 297.
+Package pdftex.def Info: /mnt/andrew/graphics/ac-motor.png used on input line 317.
(pdftex.def) Requested size: 114.0009pt x 85.35826pt.
-Underfull \hbox (badness 10000) in paragraph at lines 296--300
+Underfull \hbox (badness 10000) in paragraph at lines 316--320
[]
[]
-[2 </mnt/andrew/graphics/field-lines.png> </mnt/andrew/graphics/ac-generator.png> </mnt/andrew/graphics/dc-motor-2.png (PNG copy)> </mnt/andrew/graphics/ac-motor.png>] (./midyear.aux) )
+
+Overfull \vbox (7.05737pt too high) has occurred while \output is active []
+
+
+Overfull \vbox (6.46721pt too high) has occurred while \output is active []
+
+ [2 </mnt/andrew/graphics/field-lines.png> </mnt/andrew/graphics/ac-generator.png> </mnt/andrew/graphics/dc-motor-2.png (PNG copy)> </mnt/andrew/graphics/ac-motor.png>] (./midyear.aux) )
Here is how much of TeX's memory you used:
2872 strings out of 492649
39467 string characters out of 6135779
- 135807 words of memory out of 5000000
+ 145807 words of memory out of 5000000
6704 multiletter control sequences out of 15000+600000
7156 words of font info for 28 fonts, out of 8000000 for 9000
1141 hyphenation exceptions out of 8191
- 41i,10n,27p,274b,356s stack positions out of 5000i,500n,10000p,200000b,80000s
+ 41i,10n,27p,274b,289s stack positions out of 5000i,500n,10000p,200000b,80000s
</usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx12.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmex10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmmi7.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmr17.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmr5.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmr7.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy10.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/cm/cmsy7.pfb></usr/share/texmf-dist/fonts/type1/public/amsfonts/symbols/msam10.pfb>
-Output written on midyear.pdf (2 pages, 330962 bytes).
+Output written on midyear.pdf (2 pages, 331247 bytes).
PDF statistics:
69 PDF objects out of 1000 (max. 8388607)
43 compressed objects within 1 object stream
\pagenumbering{gobble}
\begin{multicols}{3}
+
+% +++++++++++++++++++++++
+
{\huge Physics}\hfill Andrew Lorimer\hspace{2em}
+% +++++++++++++++++++++++
\section{Motion}
- \subsection*{Unit conversion}
- $\operatorname{m/s} \times 3.6 = \operatorname{km/h}$
\subsection*{Inclined planes}
- $F = m g \sin\theta - F_{frict} = m a$
+ $F = m g \sin\theta - F_{frict} = m a$
+% -----------------------
\subsection*{Banked tracks}
- \includegraphics[height=4cm]{/mnt/andrew/graphics/banked-track.png}
- $\theta = \tan^{-1} {{v^2} \over rg}$ (also for objects on string)
- $\Sigma F$ always acts towards centre, but not necessarily horizontally
+ \includegraphics[height=4cm]{/mnt/andrew/graphics/banked-track.png}
+
+ $\theta = \tan^{-1} {{v^2} \over rg}$ (also for objects on string)
+
+ $\Sigma F$ always acts towards centre, but not necessarily horizontally
- $\Sigma F = {{mv^2} \over r} = mg \tan \theta$
+ $\Sigma F = {{mv^2} \over r} = mg \tan \theta$
- Design speed $v = \sqrt{gr\tan\theta}$
+ Design speed $v = \sqrt{gr\tan\theta}$
+% -----------------------
\subsection*{Work and energy}
- $W=Fx=\Delta \Sigma E$ (work)
- $E_K = {1 \over 2}mv^2$ (kinetic)
+ $W=Fx=\Delta \Sigma E$ (work)
- $E_G = mgh$ (potential)
+ $E_K = {1 \over 2}mv^2$ (kinetic)
- $\Sigma E = {1 \over 2} mv^2 + mgh$ (energy transfer)
+ $E_G = mgh$ (potential)
+ $\Sigma E = {1 \over 2} mv^2 + mgh$ (energy transfer)
+
+% -----------------------
\subsection*{Horizontal motion}
- $v = {{2 \pi r} \over T}$
+ $\operatorname{m/s} \times 3.6 = \operatorname{km/h}$
+
+ $v = {{2 \pi r} \over T}$
- $f = {1 \over T}, \quad T = {1 \over f}$
+ $f = {1 \over T}, \quad T = {1 \over f}$
- $a_{centrip} = {v^2 \over r} = {{4 \pi^2 r} \over T^2}$
+ $a_{centrip} = {v^2 \over r} = {{4 \pi^2 r} \over T^2}$
- $\Sigma F$ towards centre, $v$ tangential
+ $\Sigma F$ towards centre, $v$ tangential
- $F_{centrip} = {{mv^2} \over r} = {{4 \pi^2 rm} \over T^2}$
+ $F_{centrip} = {{mv^2} \over r} = {{4 \pi^2 rm} \over T^2}$
- \includegraphics[height=4cm]{/mnt/andrew/graphics/circ-forces.png}
+ \includegraphics[height=4cm]{/mnt/andrew/graphics/circ-forces.png}
+% -----------------------
\subsection*{Vertical circular motion}
- $T =$ tension, e.g. circular pendulum
- $T+mg = {{mv^2}\over r}$ at highest point
- $T-mg = {{mv^2} \over r}$ at lowest point
+ $T =$ tension, e.g. circular pendulum
- \subsection*{Projectile motion}
- \begin{itemize}
- \item{horizontal component of velocity is constant if no air resistance}
+ $T+mg = {{mv^2}\over r}$ at highest point
- \item{vertical component affected by gravity: $a_y = -g$}
-\end{itemize}
+ $T-mg = {{mv^2} \over r}$ at lowest point
-$v=\sqrt{v^2_x + v^2_y}$ (vector addition)
-
-$h={{u^2\sin \theta ^2}\over 2g}$ (max height)
+% -----------------------
+ \subsection*{Projectile motion}
+ \begin{itemize}
+ \item{horizontal component of velocity is constant if no air resistance}
+ \item{vertical component affected by gravity: $a_y = -g$}
+ \end{itemize}
-$y=ut \sin \theta-{1 \over 2}gt^2$ (time of flight)
+ \begin{align*}
+ v=\sqrt{v^2_x + v^2_y} \tag{vectors} \\
+ h={{u^2\sin \theta ^2}\over 2g} \tag{max height}\\
+ y=ut \sin \theta-{1 \over 2}gt^2 \tag{time of flight} \\
+ d={v^2 \over g}\sin \theta \tag{horiz. range} \\
+ \end{align*}
-$d={v^2 \over g}sin \theta$ (horizontal range)
- \includegraphics[height=3.2cm]{/mnt/andrew/graphics/projectile-motion.png}
+ \includegraphics[height=3.2cm]{/mnt/andrew/graphics/projectile-motion.png}
+% -----------------------
\subsection*{Pulley-mass system}
- $a = {{m_2g} \over {m_1 + m_2}}$ where $m_2$ is suspended
+ $a = {{m_2g} \over {m_1 + m_2}}$ where $m_2$ is suspended
- \subsection*{Graphs}
- \begin{itemize}
- \item{Force-time: $A=\Delta \rho$}
- \item{Force-disp: $A=W$}
- \item{Force-ext: $m=k,\quad A=E_{spr}$}
- \item{Force-dist: $A=\Delta \operatorname{gpe}$}
- \item{Field-dist: $A=\Delta \operatorname{gpe} / \operatorname{kg}$}
- \end{itemize}
+ $\Sigma F = m_2g-m_1g=\Sigma ma$ (solve)
+% -----------------------
+ \subsection*{Graphs}
+ \begin{itemize}
+ \item{Force-time: $A=\Delta \rho$}
+ \item{Force-disp: $A=W$}
+ \item{Force-ext: $m=k,\quad A=E_{spr}$}
+ \item{Force-dist: $A=\Delta \operatorname{gpe}$}
+ \item{Field-dist: $A=\Delta \operatorname{gpe} / \operatorname{kg}$}
+ \end{itemize}
+
+% -----------------------
\subsection*{Hooke's law}
$F=-kx$
$E_{elastic} = {1 \over 2}kx^2$
+% -----------------------
\subsection*{Motion equations}
+ \begin{tabular}{ l r }
+ $v=u+at$ & $x$ \\
+ $x = {1 \over 2}(v+u)t$ & $a$ \\
+ $x=ut+{1 \over 2}at^2$ & $v$ \\
+ $x=vt-{1 \over 2}at^2$ & $u$ \\
+ $v^2=u^2+2ax$ & $t$ \\
+ \end{tabular}
-\begin{tabular}{ l r }
- $v=u+at$ & $x$ \\
- $x = {1 \over 2}(v+u)t$ & $a$ \\
- $x=ut+{1 \over 2}at^2$ & $v$ \\
- $x=vt-{1 \over 2}at^2$ & $u$ \\
- $v^2=u^2+2ax$ & $t$ \\
-\end{tabular}
+% -----------------------
+ \subsection*{Momentum}
-\subsection*{Momentum}
+ $\rho = mv$
-$\rho = mv$
+ $\operatorname{impulse} = \Delta \rho, \quad F \Delta t = m \Delta v$
-$\operatorname{impulse} = \Delta \rho, \quad F \Delta t = m \Delta v$
+ Momentum is conserved.
-Momentum is conserved.
+ $\Sigma E_{K \operatorname{before}} = \Sigma E_{K \operatorname{after}}$ if elastic
-$\Sigma E_{K \operatorname{before}} = \Sigma E_{K \operatorname{after}}$ if elastic
+ $n$-body collisions: $\rho$ of each body is independent
+% ++++++++++++++++++++++
\section{Relativity}
-\subsection*{Postulates}
-1. Laws of physics are constant in all intertial reference frames
+ \subsection*{Postulates}
+ 1. Laws of physics are constant in all intertial reference frames
+
+ 2. Speed of light $c$ is the same to all observers (Michelson-Morley)
-2. Speed of light $c$ is the same to all observers (Michelson-Morley)
+ $\therefore , t$ must dilate as speed changes
-$\therefore , t$ must dilate as speed changes
+ {\bf Inertial reference frame} - $a=0$
-{\bf Inertial reference frame} - $a=0$
+ {\bf Proper time $t_0$ $\vert$ length $l_0$} - measured by observer in same frame as events
-{\bf Proper time $t_0$ $\vert$ length $l_0$} - measured by observer in same frame as events
+% -----------------------
+ \subsection*{Lorentz factor}
-\subsection*{Lorentz factor}
+ $$\gamma = {1 \over {\sqrt{1-{v^2 \over c^2}}}}$$
-$$\gamma = {1 \over {\sqrt{1-{v^2 \over c^2}}}}$$
+ $t=t_0 \gamma$ ($t$ longer in moving frame)
-$t=t_0 \gamma$ ($t$ longer in moving frame)
+ $l={l_0 \over \gamma}$ ($l$ contracts $\parallel v$: shorter in moving frame)
-$l={l_0 \over \gamma}$ ($l$ contracts $\parallel v$: shorter in moving frame)
+ $m=m_0 \gamma$ (mass dilation)
-$m=m_0 \gamma$ (mass dilation)
+ $$v = c\sqrt{1-{1 \over \gamma^2}}$$
-$$v = c\sqrt{1-{1 \over \gamma^2}}$$
+% -----------------------
+ \subsection*{Energy and work}
-\subsection*{Energy and work}
+ $E_0 = mc^2$ (rest)
-$E_0 = mc^2$ (rest)
+ $E_{total} = E_K + E_{rest} = \gamma mc^2$
-$E_{total} = E_K + E_{rest} = \gamma mc^2$
+ $E_K = (\gamma - 1)mc^2$
-$E_K = (\gamma - 1)mc^2$
+ $W = \Delta E = \Delta mc^2$
-$W = \Delta E = \Delta mc^2$
+% -----------------------
+ \subsection*{Relativistic momentum}
-\subsection*{Relativistic momentum}
+ $$\rho = {mv \over \sqrt{1-{v^2 \over c^2}}}= {\gamma mv} = {\gamma \rho_0}$$
-$$\rho = {mv \over \sqrt{1-{v^2 \over c^2}}}= {\gamma mv} = {\gamma \rho_0}$$
+ $\rho \rightarrow \infty$ as $v \rightarrow c$
-$\rho \rightarrow \infty$ as $v \rightarrow c$
+ $v=c$ is impossible (requires $E=\infty$)
-$v=c$ is impossible (requires $E=\infty$)
+ $$v={\rho \over {m\sqrt{1+{p^2 \over {m^2 c^2}}}}}$$
-$$v={\rho \over {m\sqrt{1+{p^2 \over {m^2 c^2}}}}}$$
+% -----------------------
+ \subsection*{Fusion and fission}
-\subsection*{Fusion and fission}
+ $1 \operatorname{eV} = 1.6 \times 10^{-19} \operatorname{J}$
-$1 \operatorname{eV} = 1.6 \times 10^{-19} \operatorname{J}$
+ e- accelerated with $x$ V is given $x$ eV
-e- accelerated with $x$ V is given $x$ eV
-\subsection*{High-altitude muons}
-\begin{itemize}
- {\item $t$ dilation - more muons reach Earth than expected}
- {\item normal half-life is $2.2 \operatorname{\mu s}$ in stationary frame}
- {\item at $v \approx c$, muons observed from Earth have halflife $> 2.2 \operatorname{\mu s}$}
- {\item slower time - more time to travel, so muons reach surface}
-\end{itemize}
+% -----------------------
+ \subsection*{High-altitude muons}
+ \begin{itemize}
+ {\item $t$ dilation - more muons reach Earth than expected}
+ {\item normal half-life is $2.2 \operatorname{\mu s}$ in stationary frame}
+ {\item at $v \approx c$, muons observed from Earth have halflife $> 2.2 \operatorname{\mu s}$}
+ {\item slower time - more time to travel, so muons reach surface}
+ \end{itemize}
+% +++++++++++++++++++++++
\section{Fields and power}
+ \subsection*{Non-contact forces}
+ \begin{itemize}
+ {\item electric fields (dipoles \& monopoles)}
+ {\item magnetic fields (dipoles only)}
+ {\item gravitational fields (monopoles only)}
+ \end{itemize}
-\subsection*{Non-contact forces}
-\begin{itemize}
- {\item electric fields (dipoles \& monopoles)}
- {\item magnetic fields (dipoles only)}
- {\item gravitational fields (monopoles only)}
-\end{itemize}
+ \vspace{1em}
-\begin{itemize}
-\item monopoles: field lines radiate towards central object
-\item dipoles - field lines $+ \rightarrow -$ or $\operatorname{N} \rightarrow \operatorname{S}$ (opposite in solenoid)
-\item closer field lines means larger force
-\item dot means out of page, cross means into page
-\end{itemize}
+ \begin{itemize}
+ \item monopoles: lines towards centre
+ \item dipoles: field lines $+ \rightarrow -$ or $\operatorname{N} \rightarrow \operatorname{S}$ (or perpendicular to wire)
+ \item closer field lines means larger force
+ \item dot means out of page, cross means into page
+ \item +ve corresponds to N pole
+ \end{itemize}
-\subsection*{Gravity}
-\[
-F_g=G{{m_1m_2}\over r^2}\tag{grav. force}
-\]
+% -----------------------
+ \subsection*{Gravity}
-\[
-g={F_g \over m}=G{M_{\operatorname{planet}} \over r^2}\tag{grav. acc.}
-\]
+ \[F_g=G{{m_1m_2}\over r^2}\tag{grav. force}\]
-\[
-E_g = mg \Delta h\tag{gpe}
-\]
+ \[g={F_g \over m}=G{M_{\operatorname{planet}} \over r^2}\tag{grav. acc.}\]
-\[
-W = \Delta E_g = Fx\tag{work}
-\]
+ \[E_g = mg \Delta h\tag{gpe}\]
-\subsection*{Satellites}
-\[
-v=\sqrt{GM \over r} = \sqrt{gr} = {{2 \pi r} \over T}
-\]
+ \[W = \Delta E_g = Fx\tag{work}\]
-\[
-T={\sqrt{4 \pi^2 r^2} \over {GM}}\tag{period}
-\]
+ \[w=m(g-a) \tag{app. weight}\]
-\[
-\sqrt[3]{{GMT^2}\over{4\pi^2}}\tag{radius}
-\]
+% -----------------------
+ \subsection*{Satellites}
+ \[v=\sqrt{GM \over r} = \sqrt{gr} = {{2 \pi r} \over T}\]
+ \[T={\sqrt{4 \pi^2 r^2} \over {GM}}\tag{period}\]
-\subsection*{Magnetic fields}
-% \begin{itemize}
-% \item field strength $B$ measured in tesla
-% \item magnetic flux $\Phi$ measured in weber
-% \item charge $q$ measured in coulombs
-% \item emf $\mathcal{E}$ measured in volts
-% \end{itemize}
+ \[\sqrt[3]{{GMT^2}\over{4\pi^2}}\tag{radius}\]
-% \[
-% {E_1 \over E_2}={r_1 \over r_2}^2
-% \]
+% -----------------------
+ \subsection*{Magnetic fields}
+ \begin{itemize}
+ \item field strength $B$ measured in tesla
+ \item magnetic flux $\Phi$ measured in weber
+ \item charge $q$ measured in coulombs
+ \item emf $\mathcal{E}$ measured in volts
+ \end{itemize}
-\[
-F=qvB\tag{force on moving charged particles}
-\]
+ \[{E_1 \over E_2}={r_1 \over r_2}^2\]
-if $B {\not \perp} A, \Phi \rightarrow 0$ \hspace{1em}, \hspace{1em} if $B \parallel A, \Phi = 0$
+ \[F=qvB\tag{force on moving charged particles}\]
+ if $B {\not \perp} A, \Phi \rightarrow 0$ \hspace{1em}, \hspace{1em} if $B \parallel A, \Phi = 0$
-\includegraphics[height=2cm]{/mnt/andrew/graphics/field-lines.png}
-\subsection*{Electric fields}
+ \includegraphics[height=2cm]{/mnt/andrew/graphics/field-lines.png}
-\begin{align*}
-F=qE \tag{$E$ = strength} \\
-W=q_{\operatorname{point}}\Delta V \tag{in field or points} \\
-F=k{{q_1q_2}\over r^2}\tag{force between $q_{1,2}$} \\
-E=k{Q \over r^2} \tag{$r=||EQ||$} \\
-F=BInl \tag{force on a coil} \\
-\Phi = B_{\perp}A\tag{magnetic flux} \\
-\mathcal{E} = -N{{\Delta \Phi}\over{\Delta t}} \tag{induced emf} \\
-{V_p \over V_s}={N_p \over N_s}={I_s \over I_p} \tag{xfmr coil ratios} \\
-\end{align*}
+% -----------------------
+ \subsection*{Electric fields}
+ \begin{align*}
+ F=qE \tag{$E$ = strength} \\
+ W=q_{\operatorname{point}}\Delta V \tag{in field or points} \\
+ F=k{{q_1q_2}\over r^2}\tag{force between $q_{1,2}$} \\
+ E=k{Q \over r^2} \tag{$r=||EQ||$} \\
+ F=BInl \tag{force on a coil} \\
+ \Phi = B_{\perp}A\tag{magnetic flux} \\
+ \mathcal{E} = -N{{\Delta \Phi}\over{\Delta t}} \tag{induced emf} \\
+ {V_p \over V_s}={N_p \over N_s}={I_s \over I_p} \tag{xfmr coil ratios} \\
+ \end{align*}
-\textbf{Lenz's law:} ``$-n$'' in Faraday - emf opposes $\Delta \Phi$
+ \textbf{Lenz's law:} ``$-n$'' in Faraday - emf opposes $\Delta \Phi$
-\textbf{Eddy currents:} counter movement within a field
+ \textbf{Eddy currents:} counter movement within a field
-\textbf{Right hand grip:} thumb points to north or $I$
+ \textbf{Right hand grip:} thumb points to north or $I$
-\textbf{Right hand slap:} field, current, force are $\perp$
+ \textbf{Right hand slap:} field, current, force are $\perp$
-\textbf{Flux-time graphs:} gradient $\times n = \operatorname{emf}$
+ \textbf{Flux-time graphs:} gradient $\times n = \operatorname{emf}$
-\textbf{Transformers:} core strengthens \& focuses $\Phi$
+ \textbf{Transformers:} core strengthens \& focuses $\Phi$
-% \columnbreak
+% -----------------------
+ \subsection*{Power transmission}
-\subsection*{Power transmission}
+ \begin{align*}
+ V_{\operatorname{rms}}={V_{\operatorname{p\rightarrow p}}\over \sqrt{2}} \\
+ P_{\operatorname{loss}} = \Delta V I = I^2 R = {{\Delta V^2} \over R} \\
+ \end{align*}
-\begin{align*}
- V_{\operatorname{rms}}={V_{\operatorname{p\rightarrow p}}\over \sqrt{2}} \tag
- P_{\operatorname{loss}} = \Delta V I = I^2 R = {{\Delta V^2} \over R}
-\end{align*}
+ Use high-$V$ side for correct $|V_{drop}|$
-\begin{itemize}
- {\item Parallel - voltage is constant}
- {\item Series - voltage is shared within branch}
-\end{itemize}
+ \begin{itemize}
+ {\item Parallel - voltage is constant}
+ {\item Series - voltage is shared within branch}
+ \end{itemize}
-\includegraphics[height=4cm]{/mnt/andrew/graphics/ac-generator.png}
+ \includegraphics[height=4cm]{/mnt/andrew/graphics/ac-generator.png}
-\subsection*{Motors}
+% -----------------------
+ \subsection*{Motors}
% \begin{wrapfigure}{r}{-0.1\textwidth}
-\includegraphics[height=4cm]{/mnt/andrew/graphics/dc-motor-2.png}
-\includegraphics[height=3cm]{/mnt/andrew/graphics/ac-motor.png} \\
+ \includegraphics[height=4cm]{/mnt/andrew/graphics/dc-motor-2.png}
+ \includegraphics[height=3cm]{/mnt/andrew/graphics/ac-motor.png} \\
% \end{wrapfigure}
-\textbf{DC:} split ring (one ring split into two halves)
+ \textbf{DC:} split ring (two halves)
% \begin{wrapfigure}{r}{0.3\textwidth}
% \end{wrapfigure}
-\textbf{AC:} slip ring (separate rings with constant contact)
+ \textbf{AC:} slip ring (separate rings with constant contact)
\end{multicols}