\end{axis}
\end{tikzpicture}
-\subsection*{Derivatives}
-
-\rowcolors{1}{white}{peach}
-\renewcommand{\arraystretch}{1.4}
-
-\begin{tabularx}{\columnwidth}{rX}
- \hline
- \hspace{6em}\(f(x)\) & \(f^\prime(x)\)\\
- \hline
- \(\sin x\) & \(\cos x\)\\
- \(\sin ax\) & \(a\cos ax\)\\
- \(\cos x\) & \(-\sin x\)\\
- \(\cos ax\) & \(-a \sin ax\)\\
- \(\tan f(x)\) & \(f^2(x) \sec^2f(x)\)\\
- \(e^x\) & \(e^x\)\\
- \(e^{ax}\) & \(ae^{ax}\)\\
- \(ax^{nx}\) & \(an \cdot e^{nx}\)\\
- \(\log_e x\) & \(\dfrac{1}{x}\)\\
- \(\log_e {ax}\) & \(\dfrac{1}{x}\)\\
- \(\log_e f(x)\) & \(\dfrac{f^\prime (x)}{f(x)}\)\\
- \(\sin(f(x))\) & \(f^\prime(x) \cdot \cos(f(x))\)\\
- \(\sin^{-1} x\) & \(\dfrac{1}{\sqrt{1-x^2}}\)\\
- \(\cos^{-1} x\) & \(\dfrac{-1}{\sqrt{1-x^2}}\)\\
- \(\tan^{-1} x\) & \(\dfrac{1}{1 + x^2}\)\\
- \(\frac{d}{dy}f(y)\) & \(\dfrac{1}{\frac{dx}{dy}}\) \hfill(reciprocal)\\
- \(uv\) & \(u \frac{dv}{dx}+v\frac{du}{dx}\) \hfill(product rule)\\
- \(\dfrac{u}{v}\) & \(\dfrac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}\) \hfill(quotient rule)\\
- \(f(g(x))\) & \(f^\prime(g(x))\cdot g^\prime(x)\)\\
- \hline
-\end{tabularx}
-
-\subsection*{Antiderivatives}
-
-\rowcolors{1}{white}{lblue}
-\renewcommand{\arraystretch}{1.4}
-
-\begin{tabularx}{\columnwidth}{rX}
- \hline
- \(f(x)\) & \(\int f(x) \cdot dx\) \\
- \hline
- \(k\) (constant) & \(kx + c\)\\
- \(x^n\) & \(\dfrac{1}{n+1} x^{n+1}\) \\
- \(a x^{-n}\) &\(a \cdot \log_e |x| + c\)\\
- \(\dfrac{1}{ax+b}\) &\(\dfrac{1}{a} \log_e (ax+b) + c\)\\
- \((ax+b)^n\) & \(\dfrac{1}{a(n+1)}(ax+b)^{n-1} + c\>|\>n\ne 1\)\\
- \((ax+b)^{-1}\) & \(\dfrac{1}{a}\log_e |ax+b|+c\)\\
- \(e^{kx}\) & \(\dfrac{1}{k} e^{kx} + c\)\\
- \(e^k\) & \(e^kx + c\)\\
- \(\sin kx\) & \(\dfrac{-1}{k} \cos (kx) + c\)\\
- \(\cos kx\) & \(\dfrac{1}{k} \sin (kx) + c\)\\
- \(\sec^2 kx\) & \(\dfrac{1}{k} \tan(kx) + c\)\\
- \(\dfrac{1}{\sqrt{a^2-x^2}}\) & \(\sin^{-1} \dfrac{x}{a} + c \>\vert\> a>0\)\\
- \(\dfrac{-1}{\sqrt{a^2-x^2}}\) & \(\cos^{-1} \dfrac{x}{a} + c \>\vert\> a>0\)\\
- \(\frac{a}{a^2-x^2}\) & \(\tan^{-1} \frac{x}{a} + c\)\\
- \(\frac{f^\prime (x)}{f(x)}\) & \(\log_e f(x) + c\)\\
- \(\int f(u) \cdot \frac{du}{dx} \cdot dx\) & \(\int f(u) \cdot du\) \hfill(substitution)\\
- \(f(x) \cdot g(x)\) & \(\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx\)\\
- \hline
-\end{tabularx}
+\include{../spec/calculus-rules}
\end{document}
\[\cos^2\theta+\sin^2\theta=1\]
- \subsection*{Inverse circular functions}
-
- \begin{tikzpicture}
- \begin{axis}[ymin=-2, ymax=4, xmin=-1.1, xmax=1.1, ytick={-1.5708, 1.5708, 3.14159},yticklabels={$-\frac{\pi}{2}$, $\frac{\pi}{2}$, $\pi$}]
- \addplot[color=red, smooth] gnuplot [domain=-2:2,unbounded coords=jump,samples=500] {asin(x)} node [pos=0.25, below right] {\(\sin^{-1}x\)};
- \addplot[color=blue, smooth] gnuplot [domain=-2:2,unbounded coords=jump,samples=500] {acos(x)} node [pos=0.25, below left] {\(\cos^{-1}x\)};
- \addplot[mark=*, red] coordinates {(-1,-1.5708)} node[right, font=\footnotesize]{\((-1,-\frac{\pi}{2})\)} ;
- \addplot[mark=*, red] coordinates {(1,1.5708)} node[left, font=\footnotesize]{\((1,\frac{\pi}{2})\)} ;
- \addplot[mark=*, blue] coordinates {(1,0)};
- \addplot[mark=*, blue] coordinates {(-1,3.1415)} node[right, font=\footnotesize]{\((-1,\pi)\)} ;
- \end{axis}
- \end{tikzpicture}\\
-
- Inverse functions: \(f(f^{-1}(x)) = x\) (restrict domain)
-
- \[\sin^{-1}: [-1, 1] \rightarrow \mathbb{R}, \quad \sin^{-1} x = y\]
- \hfill where \(\sin y = x, \> y \in [{-\pi \over 2}, {\pi \over 2}]\)
-
- \[\cos^{-1}: [-1,1] \rightarrow \mathbb{R}, \quad \cos^{-1} x = y\]
- \hfill where \(\cos y = x, \> y \in [0, \pi]\)
-
- \[\tan^{-1}: \mathbb{R} \rightarrow \mathbb{R}, \quad \tan^{-1} x = y\]
- \hfill where \(\tan y = x, \> y \in \left(-{\pi \over 2}, {\pi \over 2}\right)\)
-
- \begin{tikzpicture}
- \begin{axis}[yticklabel style={yshift=1.0pt, anchor=north east},x=0.1cm, y=1cm, ymax=2, ymin=-2, xticklabels={}, ytick={-1.5708,1.5708},yticklabels={\(-\frac{\pi}{2}\),\(\frac{\pi}{2}\)}]
- \addplot[color=orange, smooth] gnuplot [domain=-35:35, unbounded coords=jump,samples=350] {atan(x)} node [pos=0.5, above left] {\(\tan^{-1}x\)};
- \addplot[gray, dotted, thick, domain=-35:35] {1.5708} node [black, font=\footnotesize, below right, pos=0] {\(y=\frac{\pi}{2}\)};
- \addplot[gray, dotted, thick, domain=-35:35] {-1.5708} node [black, font=\footnotesize, above left, pos=1] {\(y=-\frac{\pi}{2}\)};
- \end{axis}
- \end{tikzpicture}
-
\subsection*{\(\sin\) and \(\cos\) graphs}
\[ f(x)=a\sin(bx-c)+d \]
\hline
\end{tabularx}
+ \begin{theorembox}{title=Factor theorem}
+ If \(\beta z + \alpha\) is a factor of \(P(z)\), \\
+ \-\hspace{1em}then \(P(-\dfrac{\alpha}{\beta})=0\).
+ \end{theorembox}
+
\subsection*{\(n\)th roots}
\(n\)th roots of \(z=r\operatorname{cis}\theta\) are:
\columnbreak
\section{Differential calculus}
+ \[f^\prime(x) = \lim_{\delta x \rightarrow 0}{\delta y \over \delta x}={\frac{dy}{dx}}\]
+
\subsection*{Limits}
\[\lim_{x \rightarrow a}f(x)\]
\(f(x)\) is continuous \(\iff L^-=L^+=f(x) \> \forall x\)
\end{enumerate}
- \subsection*{Gradients of secants and tangents}
+ \subsection*{Gradients}
\textbf{Secant (chord)} - line joining two points on curve\\
\textbf{Tangent} - line that intersects curve at one point
- \subsection*{First principles derivative}
-
- \[f^\prime(x) = \lim_{\delta x \rightarrow 0}{\delta y \over \delta x}={\frac{dy}{dx}}\]
-
- \subsubsection*{Logarithmic identities}
-
- \(\log_b (xy)=\log_b x + \log_b y\)\\
- \(\log_b x^n = n \log_b x\)\\
- \(\log_b y^{x^n} = x^n \log_b y\)
-
- \subsubsection*{Index identities}
-
- \(b^{m+n}=b^m \cdot b^n\)\\
- \((b^m)^n=b^{m \cdot n}\)\\
- \((b \cdot c)^n = b^n \cdot c^n\)\\
- \({a^m \div a^n} = {a^{m-n}}\)
-
- \subsection*{Reciprocal derivatives}
-
- \[\frac{1}{\frac{dy}{dx}} = \frac{dx}{dy}\]
-
- \subsection*{Differentiating \(x=f(y)\)}
- Find \(\dfrac{dx}{dy}\), then \(\dfrac{dy}{dx} = \dfrac{1}{\left(\dfrac{dx}{dy}\right)}\)
-
- \subsection*{Second derivative}
- \begin{align*}f(x) \longrightarrow &f^\prime (x) \longrightarrow f^{\prime\prime}(x)\\
- \implies y \longrightarrow &\frac{dy}{dx} \longrightarrow \frac{d^2 y}{dx^2}\end{align*}
-
- \noindent Order of polynomial \(n\)th derivative decrements each time the derivative is taken
-
\subsubsection*{Points of Inflection}
\emph{Stationary point} - i.e.
\end{warning}
+ \subsection*{Second derivative}
+ \begin{align*}f(x) \longrightarrow &f^\prime (x) \longrightarrow f^{\prime\prime}(x)\\
+ \implies y \longrightarrow &\frac{dy}{dx} \longrightarrow \frac{d^2 y}{dx^2}\end{align*}
+
+ \noindent Order of polynomial \(n\)th derivative decrements each time the derivative is taken
+
+
+ \subsection*{Slope fields}
+
+ \begin{tikzpicture}[declare function={diff(\x,\y) = \x+\y;}]
+ \begin{axis}[axis equal, ymin=-4, ymax=4, xmin=-4, xmax=4, ticks=none, enlargelimits=true, ]
+ \addplot[thick, orange, domain=-4:2] {e^(x)-x-1};
+ \pgfplotsinvokeforeach{-4,...,4}{%
+ \draw[gray] ( {#1 -0.1}, {4 - diff(#1, 4) *0.1}) -- ( {#1 +0.1}, {4 + diff(#1, 4) *0.1});
+ \draw[gray] ( {#1 -0.1}, {3 - diff(#1, 3) *0.1}) -- ( {#1 +0.1}, {3 + diff(#1, 3) *0.1});
+ \draw[gray] ( {#1 -0.1}, {2 - diff(#1, 2) *0.1}) -- ( {#1 +0.1}, {2 + diff(#1, 2) *0.1});
+ \draw[gray] ( {#1 -0.1}, {1 - diff(#1, 1) *0.1}) -- ( {#1 +0.1}, {1 + diff(#1, 1) *0.1});
+ \draw[gray] ( {#1 -0.1}, {0 - diff(#1, 0) *0.1}) -- ( {#1 +0.1}, {0 + diff(#1, 0) *0.1});
+ \draw[gray] ( {#1 -0.1}, {-1 - diff(#1, -1) *0.1}) -- ( {#1 +0.1}, {-1 + diff(#1, -1) *0.1});
+ \draw[gray] ( {#1 -0.1}, {-2 - diff(#1, -2) *0.1}) -- ( {#1 +0.1}, {-2 + diff(#1, -2) *0.1});
+ \draw[gray] ( {#1 -0.1}, {-3 - diff(#1, -3) *0.1}) -- ( {#1 +0.1}, {-3 + diff(#1, -3) *0.1});
+ \draw[gray] ( {#1 -0.1}, {-4 - diff(#1, -4) *0.1}) -- ( {#1 +0.1}, {-4 + diff(#1, -4) *0.1});
+ }
+ \end{axis}
+ \end{tikzpicture}
+
\begin{table*}[ht]
\centering
\begin{tabularx}{\textwidth}{|r|Y|Y|Y|}
\-\hspace{1em}\texttt{impDiff(y\^{}2+ax=5,\ x,\ y)}
\end{cas}
- \subsection*{Slope fields}
+ \subsection*{Function of the dependent
+ variable}
- \begin{tikzpicture}[declare function={diff(\x,\y) = \x+\y;}]
- \begin{axis}[axis equal, ymin=-4, ymax=4, xmin=-4, xmax=4, ticks=none, enlargelimits=true, ]
- \addplot[thick, orange, domain=-4:2] {e^(x)-x-1};
- \pgfplotsinvokeforeach{-4,...,4}{%
- \draw[gray] ( {#1 -0.1}, {4 - diff(#1, 4) *0.1}) -- ( {#1 +0.1}, {4 + diff(#1, 4) *0.1});
- \draw[gray] ( {#1 -0.1}, {3 - diff(#1, 3) *0.1}) -- ( {#1 +0.1}, {3 + diff(#1, 3) *0.1});
- \draw[gray] ( {#1 -0.1}, {2 - diff(#1, 2) *0.1}) -- ( {#1 +0.1}, {2 + diff(#1, 2) *0.1});
- \draw[gray] ( {#1 -0.1}, {1 - diff(#1, 1) *0.1}) -- ( {#1 +0.1}, {1 + diff(#1, 1) *0.1});
- \draw[gray] ( {#1 -0.1}, {0 - diff(#1, 0) *0.1}) -- ( {#1 +0.1}, {0 + diff(#1, 0) *0.1});
- \draw[gray] ( {#1 -0.1}, {-1 - diff(#1, -1) *0.1}) -- ( {#1 +0.1}, {-1 + diff(#1, -1) *0.1});
- \draw[gray] ( {#1 -0.1}, {-2 - diff(#1, -2) *0.1}) -- ( {#1 +0.1}, {-2 + diff(#1, -2) *0.1});
- \draw[gray] ( {#1 -0.1}, {-3 - diff(#1, -3) *0.1}) -- ( {#1 +0.1}, {-3 + diff(#1, -3) *0.1});
- \draw[gray] ( {#1 -0.1}, {-4 - diff(#1, -4) *0.1}) -- ( {#1 +0.1}, {-4 + diff(#1, -4) *0.1});
- }
- \end{axis}
- \end{tikzpicture}
+ If \({\frac{dy}{dx}}=g(y)\), then
+ \(\frac{dx}{dy} = 1 \div \frac{dy}{dx} = \frac{1}{g(y)}\). Integrate both sides to solve equation. Only add \(c\) on one side. Express
+ \(e^c\) as \(A\).
+
+ \subsection*{Reciprocal derivatives}
+
+ \[\frac{1}{\frac{dy}{dx}} = \frac{dx}{dy}\]
+
+ \subsection*{Differentiating \(x=f(y)\)}
+ Find \(\dfrac{dx}{dy}\), then \(\dfrac{dy}{dx} = \dfrac{1}{\left(\dfrac{dx}{dy}\right)}\)
\subsection*{Parametric equations}
\[\int f(x) \cdot dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)\]
- \subsubsection*{Definite integrals}
-
- \[\int_a^b f(x) \cdot dx = [F(x)]_a^b=F(b)-F(a)\]
-
- \begin{itemize}
-
- \item
- Signed area enclosed by\\
- \(\> y=f(x), \quad y=0, \quad x=a, \quad x=b\).
- \item
- \emph{Integrand} is \(f\).
- \end{itemize}
-
\subsubsection*{Properties}
\begin{align*}
\(\sin 2x = 2 \sin x \cos x\)
\end{itemize}
+ \subsection*{Separation of variables}
+
+ If \({\frac{dy}{dx}}=f(x)g(y)\), then:
+
+ \[\int f(x) \> dx = \int \frac{1}{g(y)} \> dy\]
+
\subsection*{Partial fractions}
To factorise \(f(x) = \frac{\delta}{\alpha \cdot \beta}\):
For restrictions, \texttt{Define\ f(x)=...} then \texttt{f(x)\textbar{}x\textgreater{}...}
\end{cas}
- \subsection*{Applications of antidifferentiation}
-
- \begin{itemize}
-
- \item
- \(x\)-intercepts of \(y=f(x)\) identify \(x\)-coordinates of
- stationary points on \(y=F(x)\)
- \item
- nature of stationary points is determined by sign of \(y=f(x)\) on
- either side of its \(x\)-intercepts
- \item
- if \(f(x)\) is a polynomial of degree \(n\), then \(F(x)\) has degree
- \(n+1\)
- \end{itemize}
-
- To find stationary points of a function, substitute \(x\) value of given
- point into derivative. Solve for \({\frac{dy}{dx}}=0\). Integrate to find
- original function.
-
\subsection*{Solids of revolution}
Approximate as sum of infinitesimally-thick cylinders
\end{enumerate}
\end{cas}
+ \subsection*{Applications of antidifferentiation}
+
+ \begin{itemize}
+
+ \item
+ \(x\)-intercepts of \(y=f(x)\) identify \(x\)-coordinates of
+ stationary points on \(y=F(x)\)
+ \item
+ nature of stationary points is determined by sign of \(y=f(x)\) on
+ either side of its \(x\)-intercepts
+ \item
+ if \(f(x)\) is a polynomial of degree \(n\), then \(F(x)\) has degree
+ \(n+1\)
+ \end{itemize}
+
+ To find stationary points of a function, substitute \(x\) value of given
+ point into derivative. Solve for \({\frac{dy}{dx}}=0\). Integrate to find
+ original function.
+
\subsection*{Rates}
\subsubsection*{Gradient at a point on parametric curve}
To verify solutions, find \(\frac{dy}{dx}\) from \(y\) and substitute into original
\end{warning}
- \subsubsection*{Function of the dependent
- variable}
-
- If \({\frac{dy}{dx}}=g(y)\), then
- \(\frac{dx}{dy} = 1 \div \frac{dy}{dx} = \frac{1}{g(y)}\). Integrate both sides to solve equation. Only add \(c\) on one side. Express
- \(e^c\) as \(A\).
-
\subsubsection*{Mixing problems}
\[\left(\frac{dm}{dt}\right)_\Sigma = \left(\frac{dm}{dt}\right)_{\text{in}} - \left(\frac{dm}{dt}_{\text{out}}\right)\]
- \subsubsection*{Separation of variables}
-
- If \({\frac{dy}{dx}}=f(x)g(y)\), then:
-
- \[\int f(x) \> dx = \int \frac{1}{g(y)} \> dy\]
-
- \subsubsection*{Euler's method for solving DEs}
+ \subsection*{Euler's method}
\[\frac{f(x+h) - f(x)}{h} \approx f^\prime (x) \quad \text{for small } h\]