- \noindent \colorbox{cas}{\textbf{On CAS:}}\\
- Action \(\rightarrow\) Calculation \(\rightarrow\) \texttt{impDiff(y\^{}2+ax=5,\ x,\ y)}\\
- Returns \(y^\prime= \dots\).
-
- \subsection*{Integration}
-
- \[\int f(x) \cdot dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)\]
-
- \subsection*{Integral laws}
-
- \renewcommand{\arraystretch}{1.4}
- \begin{tabularx}{\columnwidth}{rX}
- \hline
- \(f(x)\) & \(\int f(x) \cdot dx\) \\
- \hline
- \(k\) (constant) & \(kx + c\)\\
- \(x^n\) & \(\dfrac{1}{n+1} x^{n+1}\) \\
- \(a x^{-n}\) &\(a \cdot \log_e |x| + c\)\\
- \(\dfrac{1}{ax+b}\) &\(\dfrac{1}{a} \log_e (ax+b) + c\)\\
- \((ax+b)^n\) & \(\dfrac{1}{a(n+1)}(ax+b)^{n-1} + c\>|\>n\ne 1\)\\
- \((ax+b)^{-1}\) & \(\dfrac{1}{a}\log_e |ax+b|+c\)\\
- \(e^{kx}\) & \(\dfrac{1}{k} e^{kx} + c\)\\
- \(e^k\) & \(e^kx + c\)\\
- \(\sin kx\) & \(\dfrac{-1}{k} \cos (kx) + c\)\\
- \(\cos kx\) & \(\dfrac{1}{k} \sin (kx) + c\)\\
- \(\sec^2 kx\) & \(\dfrac{1}{k} \tan(kx) + c\)\\
- \(\dfrac{1}{\sqrt{a^2-x^2}}\) & \(\sin^{-1} \dfrac{x}{a} + c \>\vert\> a>0\)\\
- \(\dfrac{-1}{\sqrt{a^2-x^2}}\) & \(\cos^{-1} \dfrac{x}{a} + c \>\vert\> a>0\)\\
- \(\frac{a}{a^2-x^2}\) & \(\tan^{-1} \frac{x}{a} + c\)\\
- \(\frac{f^\prime (x)}{f(x)}\) & \(\log_e f(x) + c\)\\
- \(\int f(u) \cdot \frac{du}{dx} \cdot dx\) & \(\int f(u) \cdot du\) (substitution)\\
- \(f(x) \cdot g(x)\) & \(\int [f^\prime(x) \cdot g(x)] dx + \int [g^\prime(x) f(x)] dx\)\\
- \hline
- \end{tabularx}
-
- Note \(\sin^{-1} {x \over a} + \cos^{-1} {x \over a}\) is constant \(\forall x \in (-a, a)\)
-
- \subsection*{Definite integrals}
+ \begin{cas}
+ Action \(\rightarrow\) Calculation \\
+ \hspace{1em}\texttt{impDiff(y\^{}2+ax=5,\ x,\ y)} \hfill(returns \(y^\prime= \dots\))
+ \end{cas}
+
+ \subsection*{Slope fields}
+
+ \begin{tikzpicture}[declare function={diff(\x,\y) = \x+\y;}]
+ \begin{axis}[axis equal, ymin=-4, ymax=4, xmin=-4, xmax=4, ticks=none, enlargelimits=true, ]
+ \addplot[thick, orange, domain=-4:2] {e^(x)-x-1};
+ \pgfplotsinvokeforeach{-4,...,4}{%
+ \draw[gray] ( {#1 -0.1}, {4 - diff(#1, 4) *0.1}) -- ( {#1 +0.1}, {4 + diff(#1, 4) *0.1});
+ \draw[gray] ( {#1 -0.1}, {3 - diff(#1, 3) *0.1}) -- ( {#1 +0.1}, {3 + diff(#1, 3) *0.1});
+ \draw[gray] ( {#1 -0.1}, {2 - diff(#1, 2) *0.1}) -- ( {#1 +0.1}, {2 + diff(#1, 2) *0.1});
+ \draw[gray] ( {#1 -0.1}, {1 - diff(#1, 1) *0.1}) -- ( {#1 +0.1}, {1 + diff(#1, 1) *0.1});
+ \draw[gray] ( {#1 -0.1}, {0 - diff(#1, 0) *0.1}) -- ( {#1 +0.1}, {0 + diff(#1, 0) *0.1});
+ \draw[gray] ( {#1 -0.1}, {-1 - diff(#1, -1) *0.1}) -- ( {#1 +0.1}, {-1 + diff(#1, -1) *0.1});
+ \draw[gray] ( {#1 -0.1}, {-2 - diff(#1, -2) *0.1}) -- ( {#1 +0.1}, {-2 + diff(#1, -2) *0.1});
+ \draw[gray] ( {#1 -0.1}, {-3 - diff(#1, -3) *0.1}) -- ( {#1 +0.1}, {-3 + diff(#1, -3) *0.1});
+ \draw[gray] ( {#1 -0.1}, {-4 - diff(#1, -4) *0.1}) -- ( {#1 +0.1}, {-4 + diff(#1, -4) *0.1});
+ }
+ \end{axis}
+ \end{tikzpicture}
+
+ \subsection*{Parametric equations}
+
+ For each point on \(\left( f(t), g(t) \right)\):
+
+ \begin{align*}
+ \dfrac{dy}{dt} &= \dfrac{dy}{dx} \cdot \dfrac{dx}{dt} \\
+ \therefore \dfrac{dy}{dx} &= \dfrac{\left(\dfrac{dy}{dt}\right)}{\left(\dfrac{dx}{dt}\right)} \text{ provided } \dfrac{dx}{dt} \ne 0 \\
+ \text{Also...} \\
+ \dfrac{d^2y}{dx^2} &= \dfrac{\left(\dfrac{dy^\prime}{dt}\right)}{\left(\dfrac{dx}{dt}\right)} \text{ where } y^\prime = \dfrac{dy}{dx}
+ \end{align*}
+
+ \subsection*{Integration}
+
+ \[\int f(x) \cdot dx = F(x) + c \quad \text{where } F^\prime(x) = f(x)\]
+
+ \subsubsection*{Definite integrals}