General form:
 $z=r \operatorname{cis} \theta$
-$= r\operatorname{cos}\theta+r\operatorname{sin}\theta i$
+$= r(\operatorname{cos}\theta+i \operatorname{sin}\theta)$
+
+$z=a+bi$  
+$z=r\operatorname{cis}\theta$  
 
-where
 
 - $z=a+bi$
 - $r$ is the distance from origin, given by Pythagoras ($r=\sqrt{x^2+y^2}$)
 Note each complex number has multiple polar representations:
 $z=r \operatorname{cis} \theta = r \operatorname{cis} (\theta+2 n\pi$) where $n$ is integer number of revolutions
 
+### Conjugate in polar form
+
+$$(r \operatorname{cis} \theta)^{-1} = r\operatorname{cis} (- \theta)$$
+
 ### Multiplication and division in polar form
 
 $z_1z_2=r_1r_2\operatorname{cis}(\theta_1+\theta_2)$ (multiply moduli, add angles)
 
 ${z_1 \over z_2} = {r_1 \over r_2} \operatorname{cis}(\theta_1-\theta_2)$ (divide moduli, subtract angles)
 
-## de Moivres' Theorum
+## de Moivres' Theorem
 
-$(r\operatorname{cis}\theta)^n=r^n\operatorname{cis}(n\theta)$
+$(r\operatorname{cis}\theta)^n=r^n\operatorname{cis}(n\theta)$ where $n \in \mathbb{Z}$