% -----------------------
\subsection*{Hooke's law}
- $F=-kx$
+ $F=-kx$ (intercepts origin)
$\text{elastic potential energy} = {1 \over 2}kx^2$
\subsection*{Non-contact forces}
\begin{itemize}
- {\item electric fields (dipoles \& monopoles)}
- {\item magnetic fields (dipoles only)}
- {\item gravitational fields (monopoles only)}
+ {\item electric (dipoles \& monopoles)}
+ {\item magnetic (dipoles only)}
+ {\item gravitational (monopoles only, $F_g=0$ at mid, attractive only)}
\end{itemize}
\vspace{1em}
% -----------------------
\subsection*{Satellites}
- \[v=\sqrt{Gm_{\operatorname{planet}} \over r} = \sqrt{gr} = {{2 \pi r} \over T}\]
+ \[v=\sqrt{GM \over r} = \sqrt{gr} = {{2 \pi r} \over T}\]
- \[T={\sqrt{4 \pi^2 r^3} \over {GM_\text{planet}}}\tag{period}\]
+ \[T={\sqrt{4 \pi^2 r^3 \over {GM}}}\tag{period}\]
\[r = \sqrt[3]{{GMT^2}\over{4\pi^2}}\tag{radius}\]
% -----------------------
\subsection*{Electric fields}
- \[F=qE \tag{$E$ = strength} \]
+ \[F=qE(=ma) \tag{strength} \]
\[F=k{{q_1q_2}\over r^2}\tag{force between $q_{1,2}$} \]
\[E=k{q \over r^2} \tag{field on point charge} \]
\[E={V \over d} \tag{field between plates}\]
\[F=BInl \tag{force on a coil} \]
\[\Phi = B_{\perp}A\tag{magnetic flux} \]
- \[\mathcal{E} = -N{{\Delta \Phi}\over{\Delta t}} \tag{induced emf} \]
+ \[\mathcal{E} = -N{{\Delta \Phi}\over{\Delta t}} = Blv\tag{induced emf} \]
\[{V_p \over V_s}={N_p \over N_s}={I_s \over I_p} \tag{xfmr coil ratios} \]
\textbf{Lenz's law:} $I_{\operatorname{emf}}$ opposes $\Delta \Phi$ \\
\textbf{Flux-time graphs:} $m \times n = \operatorname{emf}.$
If $f$ increases, ampl. \& $f$ of $\mathcal{E}$ increase
- \textbf{Transformers:} core strengthens \& focuses $\Phi$
+ \textbf{Xfmr} core strengthens \& focuses $\Phi$
% -----------------------
\subsection*{Particle acceleration}
\[W={1\over2}mv^2=qV \tag{field or points}\]
\[v=\sqrt{{2qV} \over {m}}\tag{velocity of particle}\]
-
% -----------------------
\subsection*{Power transmission}
\includegraphics[width=4.5cm]{graphics/poissons-spot.png} \\
Poissons's spot supports wave theory (circular diffraction)
- \textbf{Standing waves} - constructive int. at resonant freq
+ \textbf{Standing waves} - constructive int. at resonant freq. Rebound from ends.
\textbf{Coherent } - identical frequency, phase, direction (ie strong & directional). e.g. laser
% -----------------------
\subsection*{Polarisation}
- \includegraphics[height=3.5cm]{graphics/polarisation.png}
+ \includegraphics[height=3.5cm]{graphics/polarisation.png} \\
+ Reduces total amplitude
% -----------------------
\subsection*{Diffraction}
\subsection*{De Broglie's theory}
- \[ \lambda = {h \over \rho} = {h \over mv} \]
+ \[ \lambda = {h \over \rho} = {h \over mv} = {h \over {m \sqrt{2W \over m}}}\]
\[ \rho = {hf \over c} = {h \over \lambda} = mv, \quad E = \rho c \]
\[ v = \sqrt{2E_K \div m} \]
+
\begin{itemize}
\item cannot confirm with double-slit (slit $< r_{\operatorname{proton}}$)
\item confirmed by e- and x-ray patterns
\subsubsection*{Stopping potential $V_0$ for min $I$}
$$V_0=h_{\text{eV}}(f-f_0)$$
+ Opposes induced photocurrent
\subsubsection*{Graph features}
\item predicts delay between incidence and ejection
\item speed depends on medium
\item supported by bright spot in centre
+ \item $\lambda = {hc \over E}$
\end{itemize}
\subsubsection*{particle model}
\item light exerts force
\item light bent by gravity
\item quantised energy
+ \item $\lambda = {h \over \rho}$
\end{itemize}
% +++++++++++++++++++++++