where $\sigma n$ is the uncertainty of $n$
-**$\sigma E$ and $\sigma t$ are inversely proportional$**
+**$\sigma E$ and $\sigma t$ are inversely proportional**
Therefore, position and velocity cannot simultaneously be known with 100% certainty.
| $f(x)$ | $\int f(x) \cdot dx$ |
| ------------------------------- | ---------------------------- |
-| $k$ (constant) | $kx + c$ |
-| $x^n$ | ${1 \over {n+1}}x^{n+1} + c$ |
+| $k$ (constant) | $kx + c$ |
+| $x^n$ | ${1 \over {n+1}}x^{n+1} + c$ |
| $a x^{-n}$ | $a \cdot \log_e x + c$ |
| $e^{kx}$ | ${1 \over k} e^{kx} + c$ |
| $e^k$ | $e^kx + c$ |
To find stationary points of a function, substitute $x$ value of given point into derivative. Solve for ${dy \over dx}=0$. Integrate to find original function.
+## Kinematics
+
+$${dV \over dt} = {\operatorname{change in volume} \over \operatorname{respect to time}}$$
+
+` |->--diff-->--| |-->--diff-->--|
+displacement velocity acceleration
+ |--<-antidiff-<---| |--<-antidiff-<-|`
+
+**displacement $x$** - change in position
+**velocity $v$** - change in displacement
+**acceleration $a$** - change in velocity
+
+$$v_{\operatorname{avg}}={\Delta x \over \Delta t}={{x_2 - x_1} \over {t_2 - t_1}}$$
+$$\operatorname{speed}_{\operatorname{avg}}={\Delta v \over \Delta t}$$