$b^{m+n}=b^m \cdot b^n$
$(b^m)^n=b^{m \cdot n}$
$(b \cdot c)^n = b^n \cdot c^n$
+${a^m \div a^n} = {a^{m-n}}$
### $e$ as a logarithm
- area enclosed by curves
- $+c$ should be shown on each step without $\int$
-$$\int xn = {x^{n+1} \over n+1} + c$$
+$$\int x^n = {x^{n+1} \over n+1} + c$$
### Integral laws
| $f(x)$ | $\int f(x) \cdot dx$ |
| ------------------------------- | ---------------------------- |
-| $k$ (constant) | $kc + c$ |
+| $k$ (constant) | $kx + c$ |
| $x^n$ | ${1 \over {n+1}}x^{n+1} + c$ |
-| $1 \over x$ | $\log_e x + c$ |
-| $e^kx$ | ${1 \over k} e^{kx} + c$ |
+| $a \cdot {1 \over x}$ | $a \cdot \log_e x + c$ |
+| $e^{kx}$ | ${1 \over k} e^{kx} + c$ |
+| $e^k$ | $e^kx + c$ |
| $\sin kx$ | $-{1 \over k} \cos (kx) + c$ |
| $\cos kx$ | ${1 \over k} \sin (kx) + c$ |
| ${f^\prime (x)} \over {f(x)}$ | $\log_e f(x) + c$ |