@@ -82,8+88,8 @@ If $n$ is odd, it is an odd function.
$$x^{p \over q} = \sqrt[q]{x^p}$$
$$x^{p \over q} = \sqrt[q]{x^p}$$
-- if $p \gt q$, the shape of $x^p$ is dominant
-- if $p \lt q$, the shape of $x^{1 \over q}$ is dominant
+- if $p > q$, the shape of $x^p$ is dominant
+- if $p < q$, the shape of $x^{1 \over q}$ is dominant
- points $(0, 0)$ and $(1, 1)$ will always lie on graph
- Domain is: $\begin{cases} \mathbb{R} \hspace{4em}\text{ if }q\text{ is odd} \\ \mathbb{R}^+ \cup \{0\} \hspace{1em}\text{if }q\text{ is even}\end{cases}$
- points $(0, 0)$ and $(1, 1)$ will always lie on graph
- Domain is: $\begin{cases} \mathbb{R} \hspace{4em}\text{ if }q\text{ is odd} \\ \mathbb{R}^+ \cup \{0\} \hspace{1em}\text{if }q\text{ is even}\end{cases}$
@@ -104,7+110,8 @@ Closed circle - point not included
Addition of linear piecewise graphs - add $y$-values at key points
Addition of linear piecewise graphs - add $y$-values at key points
-Product functions:
+Product functions:
+
- product will equal 0 if one of the functions is equal to 0
- turning point on one function does not equate to turning point on product
- product will equal 0 if one of the functions is equal to 0
- turning point on one function does not equate to turning point on product