+\documentclass[a4paper]{article}
+\usepackage[dvipsnames]{xcolor}
+\usepackage[a4paper,margin=2cm]{geometry}
+\usepackage{multicol}
+\usepackage{amsmath}
+\usepackage{amssymb}
+\usepackage{enumitem}
+\usepackage{tcolorbox}
+\usepackage{fancyhdr}
+\usepackage{pgfplots}
+\usepackage{tabularx}
+\usepackage{mhchem}
+\definecolor{important}{HTML}{ff9933}
+
+\pagestyle{fancy}
+\fancyhead[LO,LE]{Unit 3 Chemistry Revision Lecture}
+\fancyhead[CO,CE]{Andrew Lorimer}
+
+\setlength\parindent{0pt}
+
+\begin{document}
+
+ \title{\large Year 12 Chemistry \\ \huge Unit 3 Revision Lecture \\ \large Monash University \\ presented by Peter Skinner}
+ \author{Andrew Lorimer}
+ \date{4 July 2019}
+ \renewcommand{\abstractname}{}
+ \maketitle
+
+ \section{Course structure}
+ \begin{itemize}
+ \item \textbf{Unit 3:} 2 SACs, 16\% of study score
+ \begin{enumerate}
+ \item Energy production
+ \begin{itemize}
+ \item Obtaining energy from fuels
+ \item Fuel choices
+ \item Galvanic cells
+ \item Fuel cells
+ \end{itemize}
+ \item Optimising yield
+ \begin{itemize}
+ \item Rate of reactions
+ \item Extent of reactions
+ \item Production via electrolysis
+ \item Rechargable batteries
+ \end{itemize}
+ \end{enumerate}
+ \item \textbf{Unit 4:} 3 SACs, 24\% of study score
+ \item \textbf{Exam:} 60\% of study score
+ \begin{itemize}
+ \item 15 minutes reading time, 2.5 hours writing time
+ \item 30 multiple choice questions (spend 30---45 minutes, \textbf{do last}) - harder in new study design
+ \item 90 marks written questions (spend 1 hr 45 m---2 hr)\\
+ Last year:
+ \begin{itemize}
+ \item 23\% calculations (21 marks)
+ \item 44\% extended answer (40 marks)
+ \item 32\% short answer (29 marks)
+ \end{itemize}
+ \item 5---10 marks on writing chemical equations
+ \item Same marking panel as last year
+ \item Indirect assessment of pracs
+ \item $\ge$ 1 mark for significant figures
+ \item Importance of written communication
+ \item First parts are important, no consequential marks
+ \item Use dot points (short form) - especially in rates \& concentration
+ \end{itemize}
+ \end{itemize}
+
+ \begin{tcolorbox}[title=Key points]
+ \begin{itemize}
+ \item Spend 30---45 minutes on multiple choice
+ \item Focus on redox reactions
+ \item Use data book
+ \item Multiple choice questions are hard
+ \item Memorise oxidation numbers
+ \end{itemize}
+ \end{tcolorbox}
+
+ \section{Energy production}
+
+ \begin{itemize}
+ \item $C=n \div v$ or $C=m \div V$ (concentration in g L$^{-1}$)
+ \item Gases: $PV=nRT$ and \colorbox{important}{$n=V \div V_m$}
+ \item Past exams before 2017 use different SLC
+ \item Renewability - \textit{reasonable} timeframe
+ \item Fuel choices - consider:
+ \begin{itemize}
+ \item External temperature
+ \item Viscosity \colorbox{important}{(intermolecular forces)}
+ \item Hygroscopic properties \colorbox{important}{(attracts water $\implies$ forms H-bonds)}
+ \item \colorbox{important}{Cloud point}
+ \end{itemize}
+ \item Blended fuels - \colorbox{important}{use energy per mass not energy per mol}
+ \end{itemize}
+
+
+ \section{Yield \& rate}
+
+ \begin{itemize}
+ \item \colorbox{important}{Equilibrium constant $K_C$ needs units}
+ \item $K_C \equiv K$
+ \item Example question for rates: limiting factor for rate, given a set (equal) rate of both reactants consumption/production
+ \item Collision theory:
+ \begin{enumerate}
+ \item Particles must collide
+ \item Particles must collide with sufficient energy to overcome $E_A$
+ \end{enumerate}
+ \item Increase of rate with temperature:
+ \begin{enumerate}
+ \item $\uparrow$ temperature $\implies \uparrow$ energy $\implies$ more frequent collisions
+ \item $\uparrow$ temperature $\implies \uparrow$ energy $\implies$ collisions occur with greater energy\\
+ ($\implies$ greater \textit{proportion} of particles that can react per unit time)
+ \end{enumerate}
+ \item $\uparrow c(\text{reactants}) \implies $ more collisions
+ \item Definition of \textit{rate}: more products per unit time $\longrightarrow$ faster rate
+ \item Cause and effect: propose hypothesis and prove by induction
+ \item Maxwell-Boltzmann distributions - $x_{\text{peak}}$ is constant for different concentrations
+ \item \colorbox{important}{Memorise definition of \textit{catalyst}:} provides a reaction with an alternative energy pathway which has a lower activation energy
+ \end{itemize}
+
+ \subsection{Equilibria}
+ \begin{itemize}
+ \item \colorbox{important}{all} reactants and products are present at equilibrium
+ \item $K_C$ is fixed at a constant temperature and reaction
+ \item $K_C$ changes with concentrations (relative)
+ \item If reaction equation is reversed, $K_C$ value will be the reciprocal
+ \item If temperature changes, $K_C$ will change (but \colorbox{important}{not necessarily proportionally})
+ \item Le Chatelier's principle:\\
+ \textit{If a change is made to a system at equilibrium, \\the system will partially oppose this change \colorbox{important}{if it is possible}}
+ \item Accuracy of graph drawing - \colorbox{important}{use \textbf{clear} plastic ruler}
+ \begin{itemize}\item Label vertical ratios\end{itemize}
+ \item Use concentration table format for calculating equilibrium constant $K_C$
+ \end{itemize}
+
+ \begin{tcolorbox}[title=Important, colback=BurntOrange]
+ \centering
+ $K_C$ is \textbf{not} related to the rate of reaction\\
+ $\implies$ we cannot say how fast a reaction os going to occur from the $K_C$ value
+ \end{tcolorbox}
+
+ \subsection{Exothermic \& endothermic reactions}
+
+ \begin{itemize}
+ \item All combustion reactions are exothermic
+ \item Data book: molar heat of combustion $= |\Delta H|$
+ \item Endothermic reactions rarely occur naturally (creates instability/entropy)
+ \item $E_A=|E_{\text{max}}-E_{\text{initial}}|$
+ \item \colorbox{important}{If coefficients of a thermochemical equation are changed, $\Delta H$ also changes}
+ \item Possible data discrepencies in theoretical results:
+ \begin{itemize}
+ \item State of \ce{H2O}
+ \item Incomplete combustion
+ \item Heat loss to environment
+ \end{itemize}
+ \item \colorbox{important}{Analogy with simultaneous equations}
+ \item Calorimetry - \colorbox{important}{insulate \textit{sides} of can not bottom.} Be specific.
+ \end{itemize}
+ Multiple choice question examples (features of \textbf{exothermic} reactions):
+ \begin{enumerate}[label={\alph*)}]
+ \item Products are \rule{4em}{0.5pt} as they have less chemical energy than reactants \hfill \textit{(more stable)}
+ \item \rule{5em}{0.5pt} required to break bonds in products compared to reactants \hfill \textit{(more chemical energy)}
+ \end{enumerate}
+ Multiple choice question examples (features of \textbf{endothermic} reactions):
+ \begin{enumerate}[label={\alph*)}]
+ \item Transformation of \rule{4em}{0.5pt} energy from surroundings into \rule{4em}{0.5pt} \hfill \textit{(thermal, chemical)}
+ \item $\therefore$ Surroundings and reaction becomes \rule{4em}{0.5pt} \hfill \textit{(colder)}
+ \end{enumerate}
+
+ \section{Oxidation numbers (memorise)}
+
+ \renewcommand{\arraystretch}{1.4}
+ \begin{tabularx}{0.8\textwidth}{r|X}
+ \textbf{Species} & \textbf{Rule} \\
+ \hline
+ Elements & Always 0 \\
+ Ions & Same as common ion \\
+ Hydrogen & +1 (unless present as \ce{H2O} - O.N. = 0; or as hydride - O.N. = -1) \\
+ Oxygen & -2 (unless present as \ce{O2} - O.N. = 0; or as peroxide - O.N. = -1) \\
+ Molecules & Sum of O.N. must equal zero \\
+ Molecular ions & Sum of O.N. must equal overall charge on ion
+ \end{tabularx}
+
+ \section{Redox reactions}
+ \begin{itemize}
+ \item Verify equations: check charge of each side independently: charge(LHS) $=$ charge(RHS)
+ \item Electrochemical series always has \colorbox{important}{oxidants} on left
+ \item Top left and bottom right always react spontaneously
+ \item For electrochemical cell questions: first parts are important, no consequential marks
+ \item Non-standard conditions can alter positions of half-equations on electrochemical series and change $E^0$ values
+ \item Secondary cells - polarity is constant, but reaction at each electrode swaps
+ \end{itemize}
+
+ \subsection{Galvanic cells}
+ \begin{itemize}
+ \item Value of $E^0$ is \textit{not} a reliable indicator for rate of reaction
+ \item Half cells are physically separate
+ \item \colorbox{important}{Products must remain in contact with electrodes}
+ \end{itemize}
+
+ \subsection{Electrolytic cells}
+ \begin{itemize}
+ \item Possible question: name observations
+ \begin{itemize}
+ \item Bubbles
+ \item \ce{O2} would \textit{not} be visible
+ \item Cannot \textit{see} $\uparrow [$\ce{H+}$]$
+ \item Can see \ce{Cu(s)} deposit on electrode
+ \item Can see colour change (pH) - \ce{Cu2+} solution can be an indicator
+ \end{itemize}
+ \item Less side reactions in e.g. lithium ion cells (efficiency)
+ \item Lower reactions in electrochemical series do not occur forwards (L$\rightarrow$R)
+ \item Check state of \ce{H2O} - can it be liquid at that temperature?
+ \end{itemize}
+
+ \subsection{Fuel cells}
+ \begin{itemize}
+ \item Galvanic cells are primary cells, fuel cells are not primary \colorbox{important}{are they secondary?}
+ \item Major disadvantage of fuel cells: expensive electrodes (they must also function as catalysts)
+ \item Fuel cells - same overall reaction as combustion
+ \item Reactangs must not come into contact
+ \item Highly efficient
+ \end{itemize}
+
+ \subsection{Electrochemical series}
+
+ \begin{tcolorbox}[colback=SkyBlue]
+ \centering
+ Strongest oxidant will always react preferentially with best reductant\\
+ Always identify \textit{all} chemicals present in reaction on electrochemical series
+ \end{tcolorbox}
+
+\end{document}